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1.0 INTRODUCTION

The use of damping as a means of reducing wind induced motions is becoming increasingly
common. While there are many systems available to increase the damping, attention here will be limited
to passive tuned dampers which may have a solid or liquid moving mass that is tuned to a particular
mode of the building. Building motion is “seen” by the tuned element as an excitation near resonance
and hence significant motions develop and energy is dissipated by virtue of the damping elements
connecting the building and the moving mass. A review of the use of damping devices with specific
examples has been written by Kareem, Kijewski and Tamura',

While the detailed design of this type of damper may not be undertaken by many wind engineers
there will commonly be instances where a preliminary design needs to be performed to assess probable
costs and feasibility. It is to this end that the present paper is aimed. Two types of dampers are
addressed; these are the solid tuned mass damper and the liquid “U-tube” damper. In the case of the
latter device the approach taken is to define an equivalent solid mass that enables the well established
theory of the tuned mass damper to be applied and produce results that are adequate for a preliminary
assessment.

Section 2 of the paper reviews the theory of the tuned mass damper and presents the information
necessary to size the various elements and to predict performance. Two sample designs are presented,
using conventional linear shock absorbers as the damping device and one using highly non-linear wire
rope coils to provide both the damping and the stiffness connection between the mass and the main
structure.

Section 3 deals with “U-tube” liquid dampers while Section 4 presents a design case employing
both a conventional TMD and a liquid “U-tube” damper.

The primary conclusions arising from this review are presented in Section 5.

2.0 TUNED MASS DAMPERS WITH A SOLID MOVING ELEMENT
21 Ideal Linear Auxiliary Mass Damper

An idealized linear tuned mass damper is shown schematically in Fig. 1a. The primary or building
mass is denoted by M and the stiffness by K, the inherent building damping is represented by a linear

dashpot (Fp, = Cx)that provides damping as a fraction of critical, = C . The primary mass
pot (Fyp x) p ping g A m p ry

is excited by the force F(r) and the displacement is denoted by x(¢). The auxiliary mass (m) is
connected to the building by a spring (k,) and a dashpot (4, = ¢,/2{mk, . The displacement of the



auxiliary mass is x,(r) and the displacement relative to the main mass is x,(t). In developing the
theory an attempt will be made to replace the system of Fig 1a by a single-degree-of-freedom system
having the original mass and stiffness but with the damping increased from g to g + fpp (Fig. 1b).

This simplification cannot be exact but it is a very convenient approach for preliminary design since wind
tunnel test results will most commonly yield acceleration predictions in a given mode as a function of the
damping in that mode rather than as a function of the more complex system of Fig. 1a.

The design of the tuned mass damper involves the choice of three parameters,

(i) the massration; u = A/I

A
(i) the frequency tuning ratio; f, = ¥/ ™

K
e
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(ii) the damping ratio; 2, A\[’E

The frequency response function H(i f) (or |H (f ] ) can be computed as a function of J s where f,

= ZL % (i.e. Warburton®) and typical plots are shown in Fig 2. The single degree of freedom system
T

is replaced by a pair of peaks with a frequency separation of approximately i‘/% about the original
frequency and the magnitude of the response function falls with increasing mass ratio.

Design of the TMD involves choosing the three key parameters but for a given mass ratio there
will be values of 7, and g, which lead to optimum performance. Unfortunately, optimization depends
upon the quantity to be optimized and the nature (spectral distribution) of the exciting force F(¢). In an

elegant treatment of the problem den Hartog® examined the case of minimizing the rms response of the
main mass to a sinusoidal force that could have any given frequency. This classical analysis was limited
to the case of f =0 and for this case the optimum values are;
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which yield a maximum amplification factor of (1 + 2/ )"™. Since a single degree of freedom system
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with damping B, has an amplification factor of

we can write that, g, ; (the effective damping that
e
would produce the same peak displacement) as;
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Warburton and Ayorinde* examined the influence of main system damping on the optimum values of f,
and g,. Their numerical solutions indicate that for practical values of g (8 < 2% say) the shift is of no
consequence i.e. for x =0.10, Lo (£ =0)=0.9091 and 1., (£ =0.02) = 0.9009.

The response to sinusoidal loading is of interest but not of great relevance in terms of the
response to wind for which the excitation is, for the most part, random. A step towards random excitation
was taken by Crandall & Mark® (1963) who examined the response of the TMD system to white noise but
no closed form solutions were found. In 1970, Vickery & Dawrenport6 examined the TMD response to
white noise and introduced the concept of an equivalent damping that could be added directly to the
original SDo F system to produce exactly the same response. This work was also done numerically but
closed form solutions have since been obtained Warburton (1982). With no damping in the main system
and an optimization based on the main system deflection (with white noise excitation) the optimum
parameters are;
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The value of S, corresponding to optimum values of B, and f, is obtained by equating the rms
deflection of the 2 DoF system and the S DoF with a damping of A,. This yields;
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Of further interest is the ratio, R, of the rms relative deflection of the auxiliary mass to that of the main
mass. This ratio is;



i = L (+4)
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Equations 2.4 to 2.7 define the optimum damper and its performance but for a restricted set of
conditions

ie.;
(i) £ =0, undamped main system
(ii) white noise forcing

(iii) optimization of rms deflection of main system

22 Deviations from Zero Main Damping

It is of interest to examine any changes or errors that are introduced if we depart from these
conditions. As noted by Warburton & Ayorinde the addition of a small (< 2%) amount of damping to the
main system had no significant influence on the optimum values of g, and f,. Gerge37 examined the

case of white noise excitation and came to similar conclusions in regard to the tuning values but did note
small but significant changes in g,. Gerges numerical study indicated that the value of £, calculated

assuming £ = 0 cannot be directly added to the main system damping. His finding was that the total
damping on the SDoF system was best given by,

Brorat = B+ ap 2.8

where the multiplier “« " is shown in Fig. 3 as a function of g and x. « has a value very close to % for
values of x4 and g likely to be encountered. Gerges also noted small changes (less than 5%) in the
response ratio R.

2.3 Deviations from White Noise Excitation and Optimization on Displacement

The effect of spectral shape and also optimization with respect to acceleration has not received
much attention and they are best handled together. Optimization with white noise and deflection is the

same as an optimization with respect to acceleration but with a force spectral density varying as /™
rather than constant. In terms of wind engineering a force spectral density varying as /™ is far closer to
the truth that a flat spectrum (at least in the vicinity of , 1, a typical building frequency).

A study by Vickery (unpublished report, 2001) examined the influence of spectral form on the
optimization parameters and the “added damping” J,. The mass ratio was x = 0.16 and hence the

predicted values would be;

From 24  (f,), = 089
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0.189

0.102

The analysis was based upon acceleration and hence a spectrum varying as /'~ should yield close to

the above. The spectra examined were of the form

200 N =2and 3. The
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computed values of the above three parameters were,
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Bady =
B =
N=3 (f)w =
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0.928

0.205

0.105

0.910

0.195

0.111

Both the above cases have 1% main system damping but 1.5% produced similar results. This
study was far from comprehensive but it would appear that the results presented in Equations 2.4 to 2.7
provide a sound basis for the design of dampers that are optimized to minimize wind induced building

accelerations.

2.4 Application to Real Building

The system shown in Fig. 2.1 is an idealized system with only two degrees of freedom. In the
case of a real building with a TMD attached there are many modes and the simplifications involved in
reducing it to a two-degree-of-freedom system deserve attention. For a building with two distinct sway
modes and a torsional mode it is possible to simply reduce the problem to a set of three 2 DoF systems.
In the case of a translational or sway mode the main mass M of the system depicted in Fig. 2.1 is
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mass per unit height

height of damper
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This “single mode approach” has been discussed by Warburton & Ayorinde who examined “single
mode” and “multi-mode” approaches for simply supported beams and plates. The primary conclusions
are that the "single mode” approach is adequate for the structures studied even at mass ratios as high as
1.0. Typical errors in (/,),,, at u = 0.20 (a likely upper limit for buildings) were about 10% and errors

in (8,),, somewhat less. The errors were markedly less at lower mass ratios but the sensitivity of
performance on deviations from optimum increases with decreasing mass ratio.

2.4 Deviations from Optimum Tuning

For many reasons a damper as constructed will not match the optimum tuning conditions. This
may be due to less than perfect definition of the damper properties or, more likely, less than perfect
definition of the building frequency. For this reason it is worthwhile to examine the off-optimum
performance of a TMD.

For the idealized system of Fig. 2.1 and optimized for minimum rms deflection with white noise or
minimum rms acceleration with a /™ spectrum the off-tune performance is given by the following
equations;

g = 11 By R? 2.10
R? = SR+ P s 0821+ w)-2- )11 2.11
R _ relative rms disp of auxiliary mass

¥ms disp of main mass

Equation 2.10 is plotted in Fig 4 for a near optimum value of B, of ‘/% This figure clearly

demonstrates the reduction in damper performance as the frequency ratio ( i =t . J is moved from
0

its optimum value. The frequency range is dependent on the mass ratio and for a value of B. no less
than (8, ),, the range is given quite closely by
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Values of Ze (3. ),,p for a near optimum tuning ratio of . = %l+y) are shown in Fig. 5.
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and

1/2

Ri, = 42 (H”/[H[%a,,j] 2.14

2.5 Peak Accelerations

The rms acceleration at a given position due to motion in a particular mode is given very closely

by;
1
. - (27:11{2 y (:rfo“;(fn)r  ple.) 2.15
s(f, ) = spectral density of modal force
K = modal stiffness
#(z,) = modal displacement at the given position
B = damping as a fraction of critical and including the damping g, from the

TMD and also the inherent structural damping and any aerodynamic
damping

Equation 2.15 is not dependent upon the distribution of the modal force but the peak acceleration is and
the peak factor may be a function of damping if the distribution of the force is not Gaussian as is
commonly the case at high turbulence levels. This is not a problem if the relationship between
acceleration and damping comes from aeroelastic testing but with the use of pressure data or base
balance data an analysis in the time domain is advised to check the dependency of the peak factor on
damping.

An example of the dependence of the peak factor on damping is presented in Figs 6 and 7. Fig 6
shows the dependence of the rms acceleration of a building on damping. The results shown are from
time history simulations of the response of an actual building to wind load. The load histories were
derived from a roof mounted anemometer after the application of a filter to account for the estimated
aerodynamic admittance of the building. Results are presented for three 20 minute segments and the
simulated accelerations for a range of damping values are shown along with actual field measurements at
the estimated full scale damping of 1.25% of critical. As expected, the rms values vary inversely with the
square-root of the damping but, as shown in Fig 6, the peak factor rises from 5 to 8 over the same (1% to
10%) damping range. These change in damping reduced the rms accelerations by close to 70% but the
peak accelerations were reduced by only 50% for a tenfold increase in damping. This is a very significant
loss of efficiency and would require an increase in the TMD mass of (8/5)° to obtain the anticipated
reductions with a constant peak factor.

3.0 TUNED “U-TUBE” LIQUID DAMPER

The liquid tuned damper shown in Fig 8 is of the “U-tube” type and the equations of motion can
be expressed in a form very similar to those for a TMD. The following analysis uses a simple one-
dimensional flow analysis and a co-ordinate adjustment to develop the equations of motion which are
identical to a TMD with non-linear (V?) damping. The analysis is not exact since various parameters



(such as the head losses in the system) must be estimated but the results are well suited to a preliminary
design. Final design should be based on model tests.

For the LTMD shown in Fig 8, the underlying equation is;

[0 A 1 O )
os g ot &
Ny = friction slope

Integrating the equation from position 1 to position 2;
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where;
2
A
L = 7. ds
: e
2
A
L, = = (S y dx
1
V2
C, 2" = total friction loss between 1 and 2
&
C, = head of loss coefficient
v, = average velocity through horizontal duct

From continuity of incompressible flow;



dz,
dt

A4V, = 4

(]

and from conservation of mass within the LTMD;
Zy+Z, = 0

Defining s, as the relative displacement of fluid in the horizontal duct, the equation of motion becomes;

A i L Vol Vo
2—2g, = -—L§, 2% -C;
Ap g g 2,
. E, L, ’ ;
If we define a new variable x, = s, T or s, = 5 e the equation may be rewritten as;
o €
2
AL
2% +C, | =2 xr|xr\ 2g = -2 i+ 2 x,
e ARLe
Multiplying by p 4, g we have;
A £y 204, gL
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The equation of motion for a conventional TMD (see Fig. 2) is;

m x4+ Cx; x,|+kx, = —m X

Thus, the established theory for conventional TMD's is applicable to the LTMD with the following
substitutions

m = pAL,
= Le
X, = xoz
2
4]
k = szOgO
ARI‘e
2
c = i(ic L_o
P o "L

The natural frequency of the LTMD is given by

1 [2g4,
f2 = L _g......._
2z VL, 4p



The non-linear TMD equation can be approximated by a linear form

mi, +c, %, +kx, = - m X
where
¢, = 2mk yip
and
B = 2.2 Sy
T m
o, = rmms value of x

r

4.0 DESIGN CALCULATIONS
4.1 Preliminary Considerations

The building for which a damper system will be designed is shown in Fig. 9. It is presumed that
for the anticipated damping of 1% of critical the predicted peak accelerations are

ay

15 (V/20)* milli-g

1}

A
a

3 i
y 10 (V/20)" milli-g

a 12 (V/30)° milli-g at 25 m from the centre.

and the relationship between the wind speed ¥ and the return period (R ) is;
Vv = 20(1+0.14InR)
The aim of the design will be to size a damping system that will yield a peak corner acceleration of no

more than 10 milli-g for R = 1 year and will perform acceptably for speeds up to R = 20 years and be
safe for R = 350 years. The three speeds to be considered are

R = 1 V = 20m/s
R = 20 V = 142x20m/s
R = 350 V = 1.82x10m/s

For the purposes of this example it will be assumed that the corner acceleration is, very conservatively,
equal to the square root of the sum of the squares of the three components, i.e.

(152 + 10+ 123" (vi20)°

a

21.7 (v 120)°

In order to reduce this to 10 milli-g the total damping should be increased to 2.17° x 1 = 4.71%. The
damping system should provide A, where

-10 -



0.047 B, +0.75 x 0.01

or B. 0.0396

It is proposed use a conventional solid TMD to control X and Y accelerations and a pair of “U-tube”
dampers to control torsional motions. In order to allow for imperfect tuning it is necessary to assume an
efficiency that will depend upon the type of damping system employed. Solid TMD'’s can be more closely
controlled than the non-linear liquid dampers and it suggested that an efficiency of 90% would be
appropriate for the solid TMD and 75% for the U-tube.

In the case of the solid damper the target g, is 0.0396/0.9 (=0.044) which requires a mass ratio
of (4 x llO44)2 or ux =0.031. For the liquid damper the target g, is 0.0396/0.75 (=0.053) and the
required mass ratio is 0.0449.

For a roof mounted damper the modal mass for X and Y motions is 130 x 30 x 40 x 200/3.4 or
9.18 x 10° kg and hence the required TMD mass is 285 tonne. The modal “mass” for the torsional mode
is 2.066 x 10° kgm? and hence the TMD “mass” is 92.7 x 10° kgm®. It will be assumed that a pair of U-
tube dampers will be positioned 18m from the building centre and hence the mass per unit is given by,

2m182 =  927x10°

m 142 tonne

4.2 Design of Solid TMD

Fig 10 depicts a pendulum TMD with a mass of 250 tonne that is suspended by four wire ropes.
Three linear dashpots provide the damping (2 in Y, 1 in X direction). A “tuning frame" shortens the
effective pendulum length in one direction. The optimum tuning ratio for the solid damper (Equation 2.4)
is 1 -%x0.031 or 0.977 and hence the TMD frequencies are 0.176 Hz in the X and 0.195 Hz in the Y
direction. The corresponding pendulum lengths are 8.03 m and 6.50 m respectively with a 1.53 m deep
tuning frame. The results shown in Fig. 4 indicate the following approximate relationships between
efficiency and off optimum tuning;

Efficiency  80%+: £, = (£,), (1+035 )
(1) (12025 Jx)

For an efficiency of 95% and x = 0.031 the acceptable frequency range is + 3% about optimum. To
ahcieve this accuracy the building frequency would be measured rather than computed.

Efficiency 90%+ : L

Efficiency 95%+ : £

The optimum damping for the TMD (from Equation 2.5) is 0.087 as a fraction of critical and,
assuming two dashpots per direction, the linear dashpot constant is,

e c - 2 x 285,000 x 0.087 x 27z x 0.17%
= 27.4 kN/(m/s)
Y c = 30.4 kN/(m/s)

=T



The efficiency if not strongly dependent on the value of “C " and a common value of 30 kN/(m/s) for all
four units would not have a measurable influence. For a return period of 20 years the load capacity,
stroke and power dissipation capacity should be acceptable and have a reasonable “safety factor”. The
peak building accelerations for a 20 year return period and 1% damping are;

for X: 42.9 milli-g
forY: 28.6 milli-g

Fro the TMD at optimum the total damping will be 0.051 and hence the building accelerations will be
reduced to 19.0 milli-g and 12.7 milli-g respectively. The ratio of the TMD acceleration to the building
acceleration is (from Equation 2.7) 4.09 and hence the TMD accelerations are 78 milli-g and 52 milli-g for
Xand Y. The peak values of acceleration velocity and displacement of the TMD are;

e peak acceleration 0.765 m/s?
peak velocity 0.692 m/s
peak displacement 0.627 m

v peak acceleration 0.510 m/s’
peak velocity 0.416 m/s
peak displacement 0.340 .m

The peak loads in the damping units would be 20.8 KN and 12.5 kN for X and Y respectively. The
average rate of energy dissipation (assuming that the peak values are 3.7 x rms) is 1050 watts for X and
380 watts for Y. The peak displacement for the X direction might pose a problem since it requires a total
stroke of about 1.5 m. This could be reduced to about 1.0 m by mounting the X dashpots at 45° to the
horizontal and increasing the damper constant from 30 kN/(m/s) to 60 kN/(m/s). A second approach
would be to switch to a V? damper tuned for optimum performance at about R = 2 years. This would
increase the building accelerations at R = 20 years but reduce the stroke requirement. Inclined V?
dampers would reduce the stroke requirements even further and the choice of a final arrangement will
depend on the costing of the various alternatives.

4.3 Design of Liquid “U-tube” Damper

The design mass ratio is x = 0.0449 using two 143 tonne units spaced 36m apart on the roof.

The target frequency for optimum performance is 0.250/1.034 or 0.242 Hz and the optimum damping at
the chosen point of optimization is 0.104. Fig. 11 shows an idealized U-tube for which L, is

approximated as;

e

L, = L,+(H+2R)(H/W)m
and the frequency by;
f ) _]- (MJHZ
¢ 2z \ L, W
= 0.242Hz

The mass of the damper is;

-19 .



M

pPHL,B = 143,000 kg

HL B 143 m®

o

The design is commenced assuming L, =150m, H =25 mand hence B = 3.8 m. Itis further
assumed that R =0.50 m and hence;

= H
£, 150 + 3.5 B,
and
2 - 2gH

(1. o 1.
from which; |

H - 30, w = 083m

W

L = 255m

B A _
Aﬂ = 170

It is chosen to optimize for R = 1 year and check the performance at R = 20 years. The specified peak
acceleration 18 m from the building centre is 12 x 18/25 or 8.6 milli-g at 0.25 Hz and 1% damping. This
corresponds to a peak displacement of 0.034 m. At optimum damping of 0.06 this displacement is

reduced to 14 mm. The ratio of x, to x; at optimum is approximately %/2— and hence the peak
M

L
value of x, =47 mm. The maximum displacement in the horizontal duct —= x, or 27.5 mm and hence

the maximum rise in the risers is 82 mm. The optimum damping of the U-tube is 0.104. From Section 3.0
we have,

B = 0.104 = \ECTUJ;?
o, = 0.047/3.7
m = 143,000
f%ﬂ = 097
and hence
c = 15x10°
C, = 900

-3 -



The maximum displacement in the duct of 27.5 mm corresponds to a velocity 0.043 m/s and a velocity
pressure 0.92 Pa and a pressure drop across a screen of 900 x 0.92 or 828 Pa and a total force of 7.9
kN. Alternately a loss device could be placed across each riser. The velocity at this point would be three
times higher and the screen loss coefficient is reduced to 50. The total force acting on each screen or
perforated plate is 1.3 kN.

Calculations for R ~ 100 years indicated a maximum rise of 205 mm and a maximum force on
the loss screens fitted into the risers of 2.2 kN per metre.

5.0 CONCLUSIONS

The aim of the paper was to present in a compact form the relationship required for the
preliminary design of tuned mass dampers in general and also the “U-tube” liquid tuned damper.
Attention is drawn to differences between the ideal 2 DoF tuned damper and a tuned damper fitted to a
continuous multi-degree-of-freedom system. Attention is also directed to the influence that a TMD or
other added damping can have on the peak as opposed to the rms acceleration levels. In cases of high
turbulence the reduction in peak acceleration may be significantly less than the reduction in rms.
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