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the torsional component of mode 1 and the x-translational 
component of mode 3, were not satisfactorily fitted with a power 
law function.  Hence uncertainties were inherently introduced in 
the calculations of mode shape correction factors and the 
subsequent generalised wind force predictions. 

 
Low Correlation 

(Xu & Kwok, 
1993) 

High Correlation 
(Boggs, 1989) 

Simplified 
(Holmes, 

1987) 

Translation 
(Xjx, Xjy) βα

α
221

23
++

+  
βα

α
++

+
1

2  
β31

4
+

 

Twist 
(Xjθ) βα

α
221

21
++

+  
βα

α
++

+
1

1  
β21

1
+

 

α is the power law exponent of the mean wind speed profile; and 
β is the mode shape power law exponent 

Table 1. Correction factors for the estimation of generalised wind forces. 

The three sets of mode shape correction factors, corresponding to 
low and high correlations of wind load and the simplified form, 
were subsequently computed.  The low and high correlation 
mode shape correction factors had the largest and smallest values 
respectively, whilst the simplified factors were essentially 
between the two limits.  Comparing the two approach wind 
conditions, the simplified mode shape correction factors are the 
same for both wind conditions since the calculations were 
independent of the power law exponent of the mean wind 
velocity profile.  For the low and high correlation factors, the 
mode shape correction factors for wind condition A were always 
smaller than those for wind condition B because of the smaller 
power law exponent of the mean wind velocity profile for wind 
condition A. 

Linear-Mode-Shape (LMS) Method 

As an alternative to the conventional application of mode shape 
correction factors, Tse et al. (2009) developed an analysis 
methodology, referred to as the linear-mode-shape (LMS) 
method, to minimise the potential uncertainties in the estimation 
of generalised wind forces by “linearizing” the sway components 
of the 3D mode shapes without the need to assume or surmise the 
likely form of the wind load distributions. 

The LMS method allows the exact computation of the sway 
components of the generalised wind force to be determined by 
establishing a new set of centres, referred to as the LMS centres, 
at which the translational mode shapes are “linearized” by axis 
transformations.  The torsional component of the generalised 
wind force is still reliant on an appropriate selection of a torsional 
mode shape correction factor, as the twist mode shapes are 
independent of the axis transformation.  It should be pointed out 
that the LMS method is based on the linearization of the 
translational mode shapes via axis transformation, which relies 
entirely on the existence of the twist component of the mode 
shape to alter the shape of the sway components.  Hence the 
LMS method is applicable to buildings with translational-
torsional coupled mode shapes.  Detailed derivations and 
explanations of the LMS method were presented in Tse et al. 
(2009). 

Base Overturning Moment Responses 

The peak base overturning moment response coefficients about 
the x-axis, CMx, were determined for each set of applied mode 
shape correction factors and the LMS method, as presented in 
Figure 5.  The largest wind-induced base moment response 
coefficients were measured for a wind direction of 310o, i.e. for 
wind approaching the site approximately from the northwest.  
The measured results for 310o exhibited enhanced turbulent 
energy, probably due to the presence of the upstream structures 
northwest of the subject building.  The maximum and minimum 

peak overturning moment response coefficients for this wind 
direction are 1.38 and 1.11, obtained from the application of low 
and high correlation mode shape correction factors. 

In terms of the accuracy of the different methods considered in 
this study, the results presented in Figure 5 demonstrated a 
similar trend to the results of the benchmark building tested in 
isolation (Tse et al., 2009).  Comparable results were found for 
the simplified correction factor and the LMS method, providing 
values in between the upper and lower limits obtained from the 
application of low and high correlation mode shape correction 
factors, respectively.  Furthermore, the results of the high 
correlation mode shape correction factors may underestimate the 
base moment responses for some wind directions. 

 
Figure 5. Maximum base overturning moment response about x-axis.  

It can also be seen from Figure 5 that the variations of base 
moment response coefficients obtained using the different 
methods were higher at some directions, such as for 300o – 360o.  
In order to more comprehensively investigate the performance of 
the various analyses under different wind conditions due to the 
surroundings, the “coefficient of variation” of the base 
overturning moment coefficients, defined as the standard 
deviation normalised by the mean value (i.e. MMσ  ) and 
expressed as a percentage, are presented in Figure 6.  The 
distribution of wind conditions and the locations of tall building 
complexes are also included in Figure 6 for better illustration.  It 
is evident that the applicability and suitability of mode shape 
correction factors in the HFBB analysis were significantly 
influenced by the wind conditions and the characteristics of the 
surrounding terrain.  For the wind directions of 50o – 130o and 
180o – 260o, the subject building was relatively exposed as the 
surrounding buildings were shorter and the coefficients of 
variation were relatively small, with values as low as 1% or less.  
However, the coefficients of variation were considerably higher 
when the subject building was located downstream of a tall 
building complex, e.g. 20o – 40o, 140o – 160o, 270o, and 310o – 
350o, and particularly under the influence of the higher turbulent 
wind condition B. 

Conclusions 

HFBB test results for a real tall building project in Hong Kong 
were analysed by using mode shape correction factors and the 
LMS method to examine the reliability, versatility and accuracy 
of the two methods under varied wind loading environments.  
The results demonstrated that the accuracy and reliability of 
HFBB analysis methods depend significantly on the terrain 
characteristics of the nearby surroundings.  When the subject 
building was relatively exposed to the approaching wind, 
consistent results among various methods were obtained.  
However, high coefficients of variation were found among the 
application of low and high correlation mode shape correction 
factors for the wind directions at which the tested building was 
downstream of a tall building complex, especially under highly 
turbulent winds.  This is because the application of mode shape 
correction factors in the HFBB analysis did not directly take into 
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account the influence of the site specific characteristics on the 
actual wind loads.  Therefore, mode shape correction factors 
should be applied with caution in HFBB analyses when tall 
building complexes exist in the surrounding proximity.  In 
comparison, the LMS method, which does not require knowledge 
of the wind load distributions, provided more reliable predictions 
and hence demonstrated its adaptability in typical tall building 
environments where wind loading conditions are significantly 
influenced by the surroundings. 

 
Figure 6. Coefficients of variation (%) for Mx over the different HFBB 
analysis methods.  
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