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Abstract

A global stability analysis of the transverse galloping of a
square section oscillator in a normal steady flow was imple-
mented. The analysis is applied to a mathematical model us-
ing experimentally determined stationary aerodynamic forces.
The model is an ordinary differential equation with small non-
linearity in the velocity term. A number of stability analysis
methods will be compared. The resulting stability predictions
are compared with each other and with results obtained from
numerical integration. It is shown that the non-linear aeroelas-
tic oscillator presents hysteretic stability over a range of wind
speeds. All methods had varying degree of success on captur-
ing the bifurcation behaviour of the aeroelastic oscillator.

Introduction

Recent interest in non-linear aeroelastic problems has resulted
in a number of very detailed aeroelastic simulations combin-
ing Finite Element solutions for the structure and Computa-
tional Fluid Dynamic solutions for the aerodynamic forces,
e.g. Girodroux-Lavigne and Dugeai (2003). However, such
calculations are extremely computationally expensive. Fur-
thermore, the determination of the stability of such systems
requires the repetition of these calculations at various wind
speeds and from various initial conditions. Therefore, stabil-
ity prediction from CFD-FE calculations is prohibitively time-
consuming. An alternative is the application of local linearisa-
tion methods in order to predict the bifurcation points, e.g. Bad-
cock et al (2003), usually after performing some type of model
order reduction (Silva et al (2003)). Various such linearisa-
tion methods have been proposed, holding varying degrees of
promise. There are several forms of aeroelastic behaviour as-
sociated with bluff bodies. The best known is vortex excited
oscillation, in which a body vibrates in a particular mode over
a small discrete range of wind speed containing the speed at
which the shedding frequency of the Von Karman Vortex Street
formed in the wake coincides with the natural frequency of the
mode. Almost as well known are the forms generally called gal-
loping, which have in common the fact that the cylinder cross
sections are aerodynamically unstable, so that the small ampli-
tude vibrations generate forces which increase the amplitudes
to large values. The form of the motion is pure translational in
the direction normal to the plane of the incident wind and the
cylinder axis.

Galloping is defined as an instability typical of slender struc-
tures (Simiu and Scanlan (1986)). It is a relatively low-
frequency oscillatory phenomenon of elongated, bluff bodies
acted upon by a wind stream. The frequency at which the bluff
object responds is much lower than the frequency of vortex
shedding. It is in this sense that galloping may be considered
as a low frequency phenomenon. There are two types of gallop-
ing: wake and across-wind Scruton (1960).

• Wake galloping. This effect occurs when two cylinders
are present, where one is upstream, producing a wake,

and one downstream, within that wake, and the cylinders
are separated by a distance of few diameters (fig. 1). In
this type of flow the downstream body is subjected to gal-
loping oscillations induced by the turbulent wake of the
upstream cylinder. Consequently, the upstream cylinder
tends to rotate clockwise while the downstream cylinder
rotates in anti-clockwise motion, inducing torsional oscil-
lations.

• Across-wing galloping. This effect occurs when the wind
blows transversely across an object, such as a bridge deck.
This type of instability causes a crosswise vibration of the
object. As the object vibrates in a steady wind velocity,
the relative velocity changes, thereby changing the angle
of attack (α). Due to this change in incidence, an increase
or decrease in lift force on the cylinder occurs. If an in-
crease inα causes an increase in the lift in the opposite
direction of motion, the oscillation is stable. On the other
hand if the opposite occurs, i.e. an increase ofα causes a
decrease in lift force, then the oscillation is unstable and
galloping occurs (fig. 2). A classical example of this phe-
nomenon is observed in ice covered power transmission
lines. Generally galloping is avoided by reducing the dis-
tance between the supports and increasing the tension of
the lines.

Many researchers have studied the instability mechanism in the
flow over a square cylinder, which gives rise to galloping vibra-
tion Parkinson and Brooks (1961); Parkinson and Smith (1964);
Bearman and Luo (1988); Blevins (1990). The quasi-steady the-
ory was first presented in Parkinson and Brooks (1961) where a
fifth order polynomial non-linearity was introduced to describe
the aerodynamic force. This formulation was later developed
in Parkinson and Smith (1964) by extending the approxima-
tion up to seventh order. This new approximation allows for
an accurate representation of the point of inflection, thus mak-
ing it possible for the hysteresic phenomenon to appear. This
phenomenon was not observed in the original study by Parkin-
son Parkinson and Brooks (1961). The relationship between
point of inflection and the existence of a hysteretic loop was
proven in Luo et al (2003). In Norberg (1993) a dependency
between Reynolds number and hysteresis was found experi-
mentally. The validity of quasi-steady theory was investigated
in Bearman and Luo (1987) and Bearman and Luo (1988) at
different damping levels and reduced frequencies. It is impor-
tant to note that, for bluff bodies, at low reduced velocity both
galloping and vortex-induced vibration can occur. It was con-
cluded that quasi-steady theory is valid as long as the critical
reduced velocity is four times the reduced velocity at which
vortex resonance occurs. Investigation into the complex be-
haviour between vortex resonance and galloping was performed
in Parkinson and Wawzonek (1981). Galloping instability has
been the subject of very little research using numerical simula-
tion. Recently the influence of damping and the effect of aspect
ratio was investigated Robertson et al (2003). The effects on the
galloping oscillation are compared with the quasi-steady results
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obtained in earlier work Parkinson (1971).

Path of wake galloping

Wind velocity profile in wake

Wind velocity profile upstream

Figure 1: Wake galloping
model
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Figure 2: Effect of across wind
galloping on lift force

Aeroelastic Galloping Model

The aeroelastic galloping model is modelled as a mass with lin-
ear stiffness and non-linear damping as shown in fig. 3. In this
study the model derived in Andrienne and Dimitriadis (2011)
will be used. The following expression was used to model the
wind tunnel experimental data

mÿ+cẏ+ky+ 1
2ρV∞bA1ẏ+ 1

2ρbA2ẏ|ẏ|+ 1
2V∞

ρbA3ẏ3+

1
2V2

∞
ρbA4ẏ3|ẏ|+ 1

2V3
∞

ρbA5ẏ5 =− 1
2ρV2

∞bcl (α0)

(1)
TheAi coeffients are derived by curvitting of the experimental
data. The values are listed in table 1.m, c, k are the mass,
damping and stiffness coefficient respectively.b is the body
chord length andρ the air density.

A0 4.10×10−1 A3 1.42×104

A1 -1.65 A4 −2.67×105

A2 −2.6850×102 A5 1.69e×106

Table 1: Experimental Value of curvefitted data - 5th order
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Figure 3: Aeroelastic galloping model

The most accurate solution of the galloping equation of mo-
tion 1 can be obtained through numerical integration. A number
of methods exist for integrating such equations of motion. For
this work the Matlab and Simulink ODE suite is used and more
specifically the ODE45 routine which is based on an explicit
Runge-Kutta (4,5) formula, the Dormand-Prince pair Dormand
and Prince (1980). A sample resposne at 12 m/s is shown in
figure 4. It can be seen that the response settles to a LCO of
amplitude 0.011 after 50 seconds. Plots such as figure 4 are
not practical for obtaining a description of the global behaviour
of the system. Bifurcation diagrams can then be used to plot
global results. A bifurcation diagram is obtained by plotting the
maxima of the steady-state response of the system at each air-
speed and for every set of initial conditions (essentially, it is a
series of Poincaré plot). Figure 5 presents the bifurcation plot

for the system as given in equation 1. The figure compares the
same system when a 3rd and 5th order approximation of the sys-
tem under investigation i utilised. Both approximation capture
the initial jump in amplitude, due to a fold bifurcation, has the
non-linear terms start to have an effect and a stable limit cycle
is created. A second jump occurs at around 14 m/s, and this is
captured by the 5th order approximation.
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Figure 4: Galloping response
at 12 m/s
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Figure 5: Bifurcation plot

Structural and Damping Non-Linearities

Non-linearities appear in all system and can have a significant
effect on the resposne of a system. Here two types of non-
linearities will be introduced, namely a free-play non-linearity,
eqution 2, and a Coulomb frictinon-linearity (equation 3. Typi-
cal restoring force graphs are shown in figure 6.

M(x) =

{

kx+kδsgn(x) |x| ≥ δ
0 |x|< δ (2)

whereδ is the size of the free-play region and sgn is the signum
function. The Coulomb non-linearity can be expressed as fol-
lows

G(ẋ) = cẋ+µFnsgn(ẋ) (3)

whereµ is the coefficient of friction andFn the normal force.
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Figure 6: Restoring Force

Prediction Method

Harmonic Balance

The harmonic balance presented is based on the formulation
of Yang and Zhao (1988) and McIntosh et al (1981). The main
assumption of this technique is to assume that the system ad-
mits a sinusoidal limit cycle and, hence, its response is given by
y= Ysin(t) andẏ= Ycos(t), whereY is the limit cycle ampli-
tude. Then, using a Fourier Serie expansion of the non-linear
forces in the system, the non-linearities are replaced by equiva-
lent linear stiffness and damping terms. For example, consider
the equation of motion of a general single degree of freedom
system,

mẍ+cẋ+kx+ fnl(x, ẋ) = 0 (4)
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After applying the Harmonic Balance method, the non-linear
term is replaced by a sum of linear terms

fnl(x, ẋ) = Keqx+Ceqẋ (5)

whereKeq andCeq are the equivalent linear stiffness and damp-
ing terms respectively. From eq. 1 it can be noted that only
non-linear damping is present in the galloping problem, given
by

f (ẏ) = 1
2ρV∞bA1ẏ+ 1

2ρbA2ẏ|ẏ|+ 1
2V∞

ρbA3ẏ3+

1
2V2

∞
ρbA4ẏ3|ẏ|+ 1

2V3
∞

ρbA5ẏ5− 1
2ρV2

∞bcl (α0)
(6)

This non-linear term can be expanded as a Fourier series, as
follows

f (ẏ) =
a0

2
+

∞

∑
n=1

an cos(nt)+
∞

∑
n=1

bn sin(nt) (7)

where thean andbn coefficients are given by

ao =
1
π
∫ 2π

0 f (ẏ)dt
an =

1
π
∫ 2π

0 f (ẏ)cos(nt)dt
bn =

1
π
∫ 2π

0 f (ẏ)sin(nt)dt

(8)

For a first order Harmonic Balance calculation only the first
harmonic term is considered, thus only requiring the first term
of the Fourier expansion. Assuming thaty = Ysin(t) andy′ =
Ycos(t), the Fourier coefficients become

ao =
1
π
∫ 2π

0 f (Ycos(t))dt
an =

1
π
∫ 2π

0 f (Ycos(t))cos(nt)dt
bn =

1
π
∫ 2π

0 f (Ycos(t))sin(nt)dt

(9)

and after performing the intergration the following expression
is obtained

Ceq=
1
2

ρb

{

5A5

8V3
∞

Y4+
32A4

15πV2
∞

Y3+
3A3

4V∞
Y2+

8A2

3π
Y+V∞A1

}

(10)
thus yielding the following equation for an equivalent linearised
system

mÿ+cẏ+ky+ 1
2ρb

{

5A5
8V3

∞
Y4+ 32A4

15πV2
∞

Y3+ 3A3
4V∞

Y2+ 8A2
3π Y+V∞A1

}

= 0
(11)

This equation was derived using the assumption thaty =
Ysin(t). Substituting this value yields

[

5A5
8V3

∞
Y4+ 32A4

15πV2
∞

Y3+ 3A3
4V∞

Y2+ 8A2
3π Y+V∞A1+

2c
ρb

]

1
2ρbYcos(t) = 0

(12)

or for a non-trivial solution (i.e.Y 6= 0)

1
2

ρb











5A5
8V3

∞
Y4+ 32A4

15πV2
∞

Y3+ 3A3
4V∞

Y2+

8A2
3π Y+V∞A1+

2c
ρb











= 0 (13)

Equation 13 can be solved for the amplitudeY of all the pos-
sible limit cycle at each given airspeed. The solution of the
equation can be real or complex conjugate pairs. Only the so-
lutions that yield real and positive amplitudes are considered,
all others are ignored. Figure 7 compares the solution of the

0 2 4 6 8 10 12 14 16 18 20

0

0.01

0.02

0.03

0.04

0.05

0.06

Airspeed (m/s)

A
m

pl
itu

de
 (

m
)

 

 

Harmonic Balance
Numerical Integration

Figure 7: Harmonic Balance Result

Harmonic Balance method against the numerical integration re-
sults. The harmonic balance methods predict accurately the am-
plitude of the stable limit cycle. A boundary of unstable limit
cycle is also predicted, which would be in line with experimen-
tal results, which show the existance of low amplitude limit cy-
cles Andrienne and Dimitriadis (2011).

Results

The effect of the non-linearities on the response of the system is
shown in figures 8-10. Here the freeplay regionδ is set to 0.01
radians and the Coulomb damping to 10% of the linear viscous
damping. The presence of the damping non-linearity has a ben-
eficial effect on the overall response of the system (figure 8).
The start of the bifurcation is delayed by over 5 m/s. This is
expected as the linearised form of eq. 3 is

fnl(x, ẋ) =
4µFnx

Aπ
+cẋ (14)

Adding Coulomb friction increases proportionally the value of
the damping present within the system. The limit cycle am-
plitude grows much more quickly and tends to converges to the
same amplitude limit cycle as the model with only aerodynamic
non-linearity present. The addition of a free-play non-linearity
has a minimal effect on the response, as shown in figure 9. The
location of the bifurcation is at the same airspeed, as the stiff-
ness does not influence the location of the bifurcation point. The
linearised form of the free-play non-linearity (eq. 2), becomes

f (x, ẋ) =
k
π

x(pi−2t1−sin(2t1)) (15)

wheret1 = asin(δ/A)andA is the assumed limit cycle ampli-
tude. The amplitude of the limit cycle is increased and the in-
crease is constant throughout the airspeed region. When both
non-linearities are present the behavior of the system is changed
dramatically (figure 10). The delay in the start of the bifurca-
tion is still present from the Coulomb non-linearity with a quick
growth in limit cycle amplitude as the airspeed is increased. The
limit cycle ampltitude then grows beyond that of the original
model. The major difference been a shift in the steady-state
value of the response at low airspeed. Here the response settles
to a value of−δ, thus creating an initial asymmetric limit cycle.
As the airspeed is increased the limit cycle becomes symmetric
again. This effect is due to the friction component proportional
to the displacement which forces the response to decay at one
of the newly generated equilibrium points of the limit cycle,
namely the turning point of the free-play non-linearity.

Conclusions

This paper has shown the difficulty in predicting the behaviour
of a simple aeroelastic system, in this case an aeroelastic gal-
loping model. Non-linearities have a major effect in determin-
ing the response of the model, and combination of these non-
linearities can lead to different steady-state conditions that need
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Figure 8: Numerical Integration Results - Damping non-
linearity
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Figure 9: Numerical Integration Results - Stiffness non-
linearity
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Figure 10: Numerical Integration Results - Damping and Stiff-
ness non-linearity

to be accounted for. Non-linearities can have a beneficial effect
in delaying the potentially dangerous condition of limit cycle
oscillations, as is the case with Coulomb friction. Free-play
non-linearity has an overall detrimental effect to the response.
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