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SUMMARY A nrew formulation to approximate the non-linear relationship between load and stress, has been
used to derive the probability distribution of breakage pressure for a glass panel from the probability
distribution of crack depth. Using the new formulation, the authors have found that the glass strength charts
published in ASTM1300 may not be conservative.

1 INTRODUCTION

Since the strength of the glass varies with load duration, and fluctnating pressures which load the window
panes are continually being applied during a wind storm, the cumulative effect of the wind pressure
fluctuations over the entire duration of the wind storm needs to be computed. Research is currently being
carried out Monash University in order to establish an appropriate method for determining the equivalent
design wind pressure for window glass design. The results reported in this paper are part of this current
research work.

2 THE STRENGTH OF GLASS

The inherent weakness of glass was first explained by Griffith (1). He postulated that the presence of minute
surface cracks caused stress concentrations and he devised a theory capable of predicting the strength of
glass in relation to the size of the cracks. The existence of surface flaws also explained the variability which
is observed in the strength of glass. The magnitude of the applied stress that will cause failure depends on
the size of the flaw, and this is a matter of probability. It has been postulated that the variation of strength
with load duration (called "static fatigue") is due to the presence of water vapour, which enters the tiny
surface cracks and weakens the glass by chemical attack at the crack tip. (2)

Theoretical and empirical relationships to model Static Fatigue have been developed by various researchers.
Brown (3) gave an expression, for integration of stress-time effects for any specific flaw which leads to
failure, which for constant humidity and temperature can be simplified to:

tr

C = f[o(t)] adt=constant (1)
1]

3 STRESSES DEVELOPED IN GLASS PANELS SUBJECTED TO UNIFORM PRESSURE

Glass behaves in an elastic manner and obeys Hooke's law, right up to the instant of fracture. However,
simple bending theory is not valid when the deflection of the panel is more than half the panel thickness.
Since panels of glass are usually very thin, relative to their area, the deflections at breakage loads are usually
much greater than the glass thickness and consequently, due to the establishment of in-plane (membrane)
stresses the relationship between applied load and stress (and deflections) becomes non-linear.

A number of computer programs have been written since the early 1970’s. The results from these computer
programs have shown that the relative distribution of the total tensile stress on the surface (which is the som
of the bending and membrane stresses) varies as the applied load is increased. At low loads the membrane
stresses are negligible and simple bending theory may be used to give the same results. At high loads the
membrane stresses become significant and the maximum stresses lie at some point on the diagonal, moving
closer to the comer of the panel as the load increases.

A series of curves (ESDU 71013) to enable determination of stresses and deflections of rectangular plates
under uniformly distributed normal pressure was published in 1971 by the Engineering Sciences Data Unit,
Royal Aeronautical Society London. These curves, which are based on the non-linear theary, agree closely
with experimental results and the theoretical results of other rescarchers.

ES



A comparison of the stresses obtained using ESDU 71013 with the stresses measured by researchers at the
Ontario Research Foundation (ORF), on a panel of 6 mm toughened glase of size 1525 mm x 2440 mm, was
made by Calderone (4). This comparison (see Figure 1) showed that there was excellent agreement between
the stresses measured along the diagonal and the ESDU 71013 diagonal stresses. There was also close
agreement between the centre stresses, although agreement was better at the lower loads.
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In this figure, ESDU 1 and 2 are the stresses at the
STRISS (1000 330 centre and at the diagonal, calculated using the ESDU
charts and ORF 1, 2, 3, 4 and S are from strain gauge
measurements at positions on the diagonal, 54, 216,
431 and 700 mm from the comers and at the centre
of the panel respectively. It can also be seen from
Figure 1 that the variation of stress with applied load,
is different at different points on the glass panel and
that the relationship between load and stress can be
approximated by straight lines on this figure, which is
drawn using double logarithmic scales.
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01 ' SR Consequently, Calderone (15) assumed that the
PRESSURE (psi) variation of stress versus load can be approximated
Figure L. ORRF. Stress Measurements Compared to 0 8 Telationship of the form:
ESDU Stress Versus Load (or uniform pressure), og=ap’ (2)

Thus, if the variation of pressure with time P(t) is known, then the variation of stress with time, (1), can be
determined and the cumulative damage criterion of equation (1) can be written, for a particular panel, as:

te
f[P(c)]S-ﬂ dt = constant (3)
0

It should be noted that the constants, @ and § in equation (2), vary with location on the panel. It has been
postulated that for any particular panel there will be only one value of § that is critical and if this is valid,
then it will be possible to more readily obtain equivalent pressures, from wind tunnel measurements, for
glass design.

The possibility of obtaining an effective value of § was then examined by Calderone (4), using the results of
breakage tests conducted by the Ontario Research Foundation. These tests were on samples of 6 mm Float
glass of size 1525 mm x 2440 mm and various loading rates were used to achieve fracture of a large number
of panels. The breakage pressures and time taken to fracture for each test were reported by Johar (16) and
Calderone calculated the mean breakage pressure and the mean time to breakage for each loading rate used.
A line of "best fit" was then determined using geometric regression analysis and the results are shown in
Figure 2.

The slope of this line was found to be -12.96 and this indicates that the cumulative damage criterion for this
size and thickness of glass panel is given by:

tr
f[P(t)]”"‘dt = constant (4)
[+]

That is, the product S.n in equation (3) equals 12.96. Consequently, taking #=16, the value of S for this panel
is 12.96/16 = 0.81. This slope was drawn on Figure 2 and was found to be within the slopes of the measured
stresses which occurred over the surface of the panel. It therefore appeared to Calderone (4) that it may be
possible to determine an effective value of § for a particular panel, enabling the cumulative damage criterion
to be approximated by equation (3).
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T L 150 4 GLASS STRENGTH DATA
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For a linearly increasing load, it can be shown, from

1000 ) equations (1) and (2), that the equivalent constant
- stress and the equivalent constant pressure are given
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Figure 2 Time to 'Breakagc versus Breakage
Pressure (from ORF tests). !

The results reported by Johar (5) were converted
(equivalent to 60 second load duration) using equations (5) and (6). The values of the constants, § and a
used, being estimated from the strain gauge measurements, of the maximum principal tensile stress nearest to
each fracture origin. This converted stress was then used to calculate the crack depth at each fracture origin.
The distributions of crack depth, maximum principal tensile stress, and pressure at breakage are given in
figures (3), (4) and (5).

Wadsworth (6) states that a lognormal distribution has been used, to model stress failure mechanisms, when
a crack in the structure has reached a given size and the growth of the crack, at any instant is a random
propartion of its size at that time. Therefore, a lognormal distribution was determined, for the above results
and this is also shown in figures (3), (4) and (5).
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* Figure 4 Distribution of stress at breakage from ORF
data.

From figures (3), (4) and (5), it appears that a lognormal distribution represents the data well (and better than
a Weibull see figure (4)). Consequently, if an effective value of the constants S and a is valid for the panel
as a whole, then these constants can be found as follows. . T
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Figure 5 Distribution of breakage pressures from ORF data. shown in figures (4) and (5) and equations
(9) & (10), it was found that §=0.89, which
is reasonably close to the value of 0.81 found previously, by plotting the breakage rates (see figure (2)). The
difference in the results is probably due to the inaccuracies of the estimates made of the values of § and g at
each fracture location.

In a similar manner, the results obtained by Beason, which were for glass removed from a 20 year old
building, were converted 0 the equivalent for 60 second load duration using equations (5) and (6). In this
case, since strain gauge measurements were not made in these tests, the constants, § and a used, were
estimated from the ESDU charts. The distribution of breakage pressures for these results is shown in figure
(6). It was found that the distribution of breakage pressure for the inside surface was different to that of the
outside surface. However, Beason used the combined data for his analysis of glass strength,
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Finally, the surface strength parameters (mean and

T standard deviations of the lognormal distributions) found
ot from Beason's results, were used with the glass geometry
st parameters (S and a) for the glass size used in the ORF

results, to find the distribution of breakage pressure, for
old glass of the size used on the ORF tests. (See figure
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. . . breakage pressure for a glass panel, from the distribution
prgure §  Disribotion of breakage pressire o breakage siress (or the crack dopth), provided the glass

geometry parameters (§ and a) can be determined for the
panel as a whole. Using estimated parameters for the panels of glass tested by Beason, the distribution of
breakage stress was found for the 20 year old glass tested and using this distribution with the parameters for
thesizeswstcdbyORFgaveapmbabilityoflmakageon%atthealIowabledwignwindprmcgivmby
ASTM1300 for this size of glass. However, ASTM1300 states that the probability of breakage is 8 in 1000.
Consequently, the probability of breakage of the ASTM1300 charts may be higher than it states.

The results presented in this paper are preliminary only. Therefore, it is necessary to carry out more detailed

mmlyswudngmmmcmﬂdydc&mﬁmdpammcm(Smda)aMﬁmhamﬁngmoldﬂglamshouldbc
carried out to determine the appropriate distribution of crack depth for design of window glass panels,
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the glass breakage data than a Weibull ’\
distribution. Also, by using a new formulation to
approximate the non-linear relationship between | \
load and stress, it is possible to derive the |
probability distribution of breakage pressure for a
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crack depth. Using this method allows convenient /
analysis of the probability of breakage of glass Y \
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Figure 7 Distribution of breakage pressure for old glass
: in ORF test size panels,
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