A PROBABILISTIC MODEL OF SEVERE THUNDERSTORMS
FOR TRANSMISSION LINE DESIGN

C.Q. Liand]J. D. Holmes
CSIRO Division of Building, Construction and Engineering

Introduction

The design of transmission line structures is invariably governed by wind loading. The
wind loads used in most design codes and standards for structures in Australia have been
based almost exclusively on large scale wind storms (AS 1170.2-1989), including severe
storms such as tropical cyclones. Very limited guidance is given on severe small scale
(local) wind storms, such as severe thunderstorms. A recent review on failures of
transmission line structures revealed that a large proportion of failures (more than 90%)
are due to severe thunderstorms, such as tornadoes and downbursts. A brief overview of
transmission line failures in many parts of the world shares the same conclusion.

As the number of transmission line failures increases, while more transmission lines are
being built throughout the world, the costs associated with transmission line failures are
being realised. It is therefore obvious that the necessity of design for severe thunderstorm
events needs to be re-evaluated. The intention of this report is to propose a probabilistic
model that could realistically and accurately estimate the design wind speed for
transmission lines due to severe thunderstorms. Of particular interest are downbursts (or
gust fronts) originating from thunderstorms since they are the main cause of transmission
line failures in Australia. Based on the proposed model, a preliminary parametric study
will be carried out with respect to different random variables involved.

This study is part of a larger study of thunderstorm winds and transmission line design,
supported by ESAA (Electrical Supply Association of Australia).

Severe Thunderstorms

Thunderstorms have their genesis in the initial uplift of warm, moisture-laden air (seee.g.
Li and Holmes, 1994). There are several different types of thunderstorms, depending on
the origin and the associated meteorological activities. All types of thunderstorms can
occasionally become severe. According to Australian climatology, a thunderstorm is
considered severe if it produces winds in excess of 28.3 m/s (55 knots) (In the US, it is set
at 25.9 m/s). The most severe thunderstorm is a tornado, which has been accorded
sufficient attention in literature and therefore will not be discussed in the report. Another
type of severe thunderstorm is the so-called downburst. A downburst is an intensive
downdraft and gust front system. Downbursts can induce an outburst of damaging winds
near the ground with near surface speeds in excess of 50 m/s. The strong wind tends to
flow outward radially from where the descending current strikes the earth. The typical
size of damaging storms is 6 to 8 km across. At a point beneath the thunderstorm, strong
winds may be sustained for up to 30 minutes. In this report, severe thunderstorms are
referred to as downbursts.

Mathematical Models

Consider the failure of a transmission line due to thunderstorms is an event A that the
wind speed exceeds a prescribed design wind speed and at the same time the
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thunderstorm strikes the transmission line. The probability of the transmission line failure
given that at least one thunderstorm occurs is therefore,

P¢=P(A)=P[V>Vpn§S] (1)

where V is the wind speed induced by thunderstorms; Vp is the design wind speed for
transmission lines; S is the event that the thunderstorm strikes the transmission line. The
probability of transmission line failure under N thunderstorms occurrence is

P(AIN) = P[ gﬂl (Vi> Vb A si)] - P[lszNl Ai] 2)

where P(A [ N) is the conditional probability of A given N; i refers to the ith thunderstorm.

As can be seen, it is difficult in Eq. (2) to determine the probability that a thunderstorm
strikes the transmission line. One way to tackle the problem is to make use of geometrical
probability, as was done for tornado risk analysis. The geometrical feature of transmission
lines is that, in a reference area, only one dimension, i.e., the length of the transmission
line is of significance. Accordingly, the geometrical size of a thunderstorm is measured by
a path length. The path length of a thunderstorm is defined as the reference distance that
the thunderstorm passes with a certain speed. Some data required to estimate the path
length may be available from, for example, Dines anemometer charts of meteorological
stations. Assume that the ith thunderstorm occurs with a path length b;. According to the
principles of geometrical probability, the probability of a design wind span ¢ of the
transmission line being hit is

bi¢/L ifbi<L/¢

Hi(bj) = { (3)

1 ifbj>L/¢
where L is the significant design length of the transmission line in the reference area.

Since bj is a random variable, the probability of a strike by the ith thunderstorm in Eq. (2)
is

p(s) =, Psi [bi=b)- )b @
where f(b) is the probability density function of path length b. Substituting Eq. (3) into Eq
(4), it becomes

ps) =/ Hb) - fb)db ®)
Since the wind speed V and the path length b may be correlated in general, the probability

of event A; in Eq. (2) can be expressed, by substituting Eq. (5), as

P(A) = P[(Vi> VD) il = [, _[ H®) - fv, byav ab ©)

where f(v, b) is the joint probability density function of V and b. For simplicity, denote
Eq. (6) as Q(V).
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Because the number, N, of thunderstorms that might occur is not known a priori in a

given time period T, it is appropriate to treat N(T) as a random variable. If it is further
assumed that the events that thunderstorms occur are independent of each other, and that
the occurrence rate of thunderstorms is constant with time, it may be found that N(T)

follows the Poisson distribution. Denoting A as the mean occurrence rate of

thunderstorms, and after some mathematical operations (Li and Holmes, 1994), the final
solution of Eq. (1) is

Pf=1-exp [-AQ(VD)T] (7)
where Q(Vp) is obtained from Eq. (6).
Design Win ed

For design purposes, Eq. (7) may be further simplified to
Pg=AQ(Vp)T (8)

obviously, when AQ(VD)T is small i.e.,, AQT < 0.02, Eqs (7) and (8) are very close. The
computation of Q(Vp) i.e., Eq. (6) is quite involved and hence not user-friendly. One way
to simplify Eq. (6) is to use conditional probability, provided that conditional distribution
is available. By definition of conditional distribution, Eq. (6) can be expressed as:

Q(Vp) = J.MJ-: H(b) - f(v) f(blv) dvdb= I;; f(v)dv r: H(b) - f(blv)db (9)

Vp

where f(b|v) is the probability density function of path length b, given wind speed V > Vp.
Substituted Eq. (3) into Eq. (9) and ignoring the almost impossible case of b; > L/?, it
yields (Li and Holmes, 1994)

Q(VD) =1 G(VD) - b 10)

where G() =1-F(),i.e. F(V>Vp)and p denote the mean of the random variable. Eq. (10)
is easier to use than Eq. (6). Together with Eq. (8), statistical data that are required to

obtain the design wind speed Vp include: (i) Mean occurrence rate A. (ii) Probability
distribution function of wind speed V, F(V). (iii) Conditional mean of path length b given

V > VD, Ubw. When these above statistical parameters are available, the design wind
speed can be computed for a given acceptable risk, which is usually expressed in terms of
return period R in design practice, i.e.

L
B =
ALG(VD)- Ubv

(11)

It is evident that Eq. (11) is very easy to apply.
With typical values of these variables in Table 1, some results of computation are shown

in Figures 1 and 2. It can be seen that, for a given design speed Vp, the return period R is
very sensitive to distribution parameters, chartacterised by a and u, and vice versa.
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Therefore, using accurate probability distribution functions of wind speed V is important
in the modelling of severe thunderstorms for transmission line design.

This model will be used with data derived from the improved Dines anemometer records
of the Bureau of Meteorology which are currently being analysed.
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Table 1. Typical values of parameters

Parameter L £ A Ub v
unit km km per year km
value 150 0.5 1 2
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Figure 1. Return period as a function of wind speed (I).
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Figure 2. Return period as a function of wind speed (I1).
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