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1 Introduction

This paper describes and discusses recent digital computer simulations of vortex-induced vi-
bration of circular cylinders. One of the major problems in producing simplified models of
vortex-induced oscillations of lightly-damped slender structures is just that the physics of the
flows are as yet poorly documented and understood. In the last decade, for example, a number
of significant new features of bluff-body wakes have been found by experimentalists, and these
results must eventually be reconciled with engineering models for prediction of vortex-induced
vibrations. Computer simulations can ease the observational difficulties in these flows and aid
in understanding the physics of vortex-induced vibration.

Results for fixed cylinders and cylinders in forced and vortex-induced oscillations will be
presented for two- and three-dimensional calculations in the Reynolds number range 200-500.

2 Method

In the simulations to be described here, the Navier-Stokes equations have been solved in an
accelerating frame of reference attached to the cylinder. This means that the computational
mesh does not have to distort to accommodate cylinder motion, as in some other methods,
but a forcing term has to be added to the Navier-Stokes equations in order to account for
the acceleration of the reference frame, and the boundary conditions also have to be adjusted
appropriately at each timestep. If the cylinder is in forced oscillation, the frame accelerations
and velocities are known functions of time, however in the case of vortex-induced oscillation,
the cylinder moves in under the influence of pressure and viscous forces applied by the fluid
and structural stiffness and damping forces, so a set of body-motion ODEs are coupled to the
Navier—Stokes and continuity equations.

This method is implemented directly for two-dimensional simulations, using a finite element
technique with spectral accuracy for the spatial discretization, and a high-order time-splitting
scheme for temporal integration. For three-dimensional simulations, the flow is assumed to be
periodic along the cylinder span, allowing a Fourier decomposition in the spanwise direction,
in which case a set of equations directly analogous to the 2D Navier—-Stokes equations must be
solved for each Fourier mode. Each mode can then be integrated forward in time, in parallel
on independent processors, with inter-processor communication required only during formation
of the nonlinear terms in the Navier—Stokes equations. Since the zeroth Fourier mode describes
spanwise-mean flows and forces, only one processor needs to implement frame-motion inertial
terms, time-varying boundary conditions, and integration of the ODEs. For more detailed discus-
sions of the numerical technique, see Blackburn & Karniadakis (1993), Blackburn & Henderson
(1994).

In order to reduce problems associated with cross-flow blockage and finite inflow and outflow
lengths to a minimum, the computational domain was chosen to be at least 25 cylinder diameters
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Figure 1: Gauss—Lobatto-Legendre finite element meshes used for Re < 250 (left) and Re = 500
(right).

across and 25 diameters long downstream of the cylinder. In the Reynolds number range of the
simulations, the cross-flow dimension may be reduced as Re increases, however it has been found
that the size of the domain has to be increased substantially in the streamwise direction with
increasing Re to maintain numerical stability, particularly when the cylinder has substantial
cross-flow oscillation amplitude; at Re = 500, the outflow distance required is of the order
of 40 diameters. As Reynolds numbers rise, the spatial resolution must also be increased,
with a consequent reduction in timestep demanded by the CFL stability criterion. In order
to balance the requirements of fine spatial resolution, large domain size, while at the same
time minimizing computer memory requirements, a mesh patching scheme has been introduced
for non-conforming meshes (Henderson & Karniadakis 1993). The conforming mesh used for
simulations at Re < 250 and the non-conforming mesh used at Re = 500 are shown in figure 1.

3 Results

Figure 2 shows results from two-dimensional forced-oscillation simulations carried out at Re =
200; a range of cylinder oscillation frequencies were employed at three cross-flow oscillation
amplitudes: +0.1 D, 0.2 D and +0,5 D, where D is the cylinder diameter. The shaded band
on the figure shows the approximate limits of lock-in, where the vortex shedding frequency was
the same as that of the forced oscillation. The now-familiar shape (the “A’rnold tongue” of
chaos theory) is seen to emerge, in agreement with experimental results obtained at similar and
higher Reynolds numbers.

At the same value of Reynolds number, vortex-induced vibrations were simulated and a
range of oscillation amplitudes were obtained by varying the cylinder damping ratio ¢ and the
density ratio m/pD?, which are often combined in the mass-damping parameter m{/pD? (i.e.
the Scruton number divided by 4x). Here it is a comparatively simple matter to study the
effects of varying the two parts of the mass-damping parameter separately, and the results are
shown in figure 3, plotted against a compilation of experimental results (Griffin 1992). A number
of features may be noted: firstly, the overall shape of the experimental results is reproduced;
secondly, limiting amplitudes in the limit ( — 0 are observed in both the experimental and
computational results; the lack of agreement in amplitude between experiments and simulations
might be attributed to the wide disparity in Reynolds numbers (computations: 200; experi-
ments: 300-10%). Thirdly, the combination of the density and damping ratios into a single
parameter is not quite valid in the low-damping limit (associated with the fact that the motions
are not simple harmonic). Finally, the cross-flow oscillation amplitudes are overpredicted at
high values of m(/pD? (which are typical for wind engineering applications); this is most likely
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Figure 2: Frequency-amplitude envelope employed for forced-oscillation computations at Re =
200. Approximate limits within which lock-in was observed are shown shaded.
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Figure 3: Maximum values of steady-state peak-to-peak free vibration oscillation amplitudes at
Re = 200 as functions of the mass-damping product (;/u = 8725t?m(/pD?. A comparison of
computed values for density ratios m/pD? = 1 and 10 with a compilation of experimental values
reproduced from Griffin (1992).

a consequence of the inability of the two-dimensional simulations to reproduce the significant
three-dimensionality and consequent loss of spanwise coherence of lift forces found in flows at
higher Reynolds numbers.

A significant feature of cylinder wakes reported from experiments employing forced cross-flow
oscillations at Re < 1000 by Williamson & Roshko (1988) is the presence of regimes of amplitude
and frequency in which the “classical” vortex-street wake behaviour is modified so that twoe pairs
of vortices are shed per cycle of cylinder motion (the “2P” mode). In addition, an asymmetric
regime was found, with a pair of vortices on one side of the wake, and a single vortex on the
other (the “P+S” mode). In the 2D simulations reported in Blackburn & Henderson (1994),
only the conventional “25” mode was observed, and it was conjectured that the at the lower
Reynolds numbers employed there (Re = 250), the other wake modes were not observed as
a consequence of the increased diffusivity of vorticity at Reynolds numbers lower than those
employed by Williamson & Roshko. We show in figure 4 results for a 2D simulation carried
out at Re = 500 with the non-conforming mesh of figure 1 and a forced cross-flow oscillation
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Figure 4: Vorticity contours for a 2D simulation at Re = 500 with forced cross-flow oscillation
amplitude of £0.5 D, showing the “P+S” mode observed in the experiments of Williamson &
Roshko (1988).

amplitude of £0.5 D: the “P+S” vortex-shedding mode is clearly visible.

4 Discussion and Conclusion

While computer simulations can not as yet successfully deal with the wide range of Reynolds
numbers found in typical engineering applications, many of the basic physical processes can be
found in the range of Reynolds numbers that can currently simulated directly: full simulations
of three-dimensional cylinder wake flows can at present reach Reynolds numbers of around 1 000
and with some development of large eddy simulation techniques, much larger Reynolds numbers
will soon be attempted. The results presented here should indicate the possibilities of application
of computer simulation techniques to fundamental problems of vortex-induced vibration.
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