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ABSTRACT 

In order to evaluate crosswind vibrations of rectangular cylinders, machine learning method was used 
to build an efficient and effective prediction model for supplementing wind tunnel tests and numerical 
simulation. 5 machine learning models were trained based on the existing high-quality and reliable 
wind tunnel test datasets. 4 types of crosswind vibration phenomena, including over-coupled, coupled, 
semi-coupled and decoupled, were predicted. It was found that the gradient boosting regression tree 
model is capable of predicting crosswind responses of rectangular cylinders at side ratios from 0.75 to 
3 and Scruton numbers from 0 to 150 under wind flow with turbulence intensities from 0 to 16%. 
Evidently, GBRT model can be an effective and economical method to study crosswind vibrations of 
rectangular cylinders and hence supplement traditional wind tunnel tests and numerical simulation. 
 

1. Introduction 

Crosswind vibration, due to its potential large oscillation amplitudes, is one of the key issues in the 
wind-resistant design of such structures. Rectangle is one of the typical shapes for the cross section of 
such structures, which are usually prone to vortex-induced vibration (VIV) and galloping. Furthermore, 
VIV and galloping are possibly coupled with each other to result in unexpected large amplitudes, which 
would increase the possibility to destroy structures.  
 
To date, a complete and accurate theory to explain coupled and decoupled phenomenon of VIV and 
galloping of rectangular cylinders is still unavailable. Although the theoretical analysis model of VIV has 
been continuously improved in recent years (Mannini, 2020; Mortveit Ellingsen and Amandolese, 
2020). However, these methods are still based on empirical or semi-empirical models, and experiments 
are preconditions of the analysis process. Den Hartog (1956) systematically discussed galloping based 
on quasi-steady assumption and created a criterion, i.e. Den Hartog criterion, to evaluate the 
possibility of galloping. However, its weakness is still well documented. It is still impossible to 
completely explain and estimate galloping through the quasi-steady theory (Mannini et al., 2015a, 
2018; Massai, 2016).  
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Wind tunnel aeroelastic tests and fluid-structure interaction (FSI) numerical simulations have been 
widely applied to assess crosswind vibrations of rectangular cylinders. However, both aeroelastic tests 
and FSI numerical simulations are very time-consuming  (Gao and Zhu, 2017). Furthermore, the 
accuracy of numerical simulation is still controversial (Fang and Gu, 2008; Tang et al., 2015). Therefore, 
an economical and effective supplement to these traditional research tools is essential for investigating 
crosswind vibrations of rectangular cylinders.  
 
Due to the large amount of accurate and reliable experimental data accumulation in the literature and 
the growing demand for mathematical methods to process big data, machine learning (ML) technique 
has made great breakthroughs in engineering applications in recent years (Hu and Kwok, 2020; Hu et 
al., 2020; Li et al., 2020). Therefore, due to the complexity of wind tunnel aeroelastic tests and the 
unreliability of numerical simulation of fluid-structure interaction, this study aims to build a ML model 
to predict crosswind responses of rectangular cylinders based on a large number of reliable wind 
tunnel test datasets collected from previous studies.  
 

2. Data collection and processing 

The main factors include side ratio (B/D, B is the streamwise dimension of rectangular cylinders and D 
is the cross-flow dimension of rectangular cylinders which is perpendicular to the incident flow), 
turbulence intensity (Ti) and Scruton number (Sc, Sc = 4πMξ/ρBDL, where M is the effective mass of 
the system, ξ is the mechanical damping ratio, ρ is the air density and L is the length of rectangular 
cylinders). These factors are all displayed important roles in the crosswind vibrations of rectangular 
cylinders (Mannini et al., 2016a, 2014, 2015b, 2016b, 2017). 
 
In this study, only zero wind attack angle is considered in the study due to the limitation of datasets. 
Meanwhile, the influence of Reynolds number on the crosswind vibrations of bluff bodies with sharp 
edges can be negligible (Holmes, 2018). Therefore, the inputs of ML models in this study include side 
ratio, turbulence intensity, Scruton number and reduced wind speed (U/f D, where U is the wind speed 
of the oncoming flow and f is the natural frequency of the structure), while the output of ML models 
is the dimensionless crosswind response (A/D, where A is the crosswind vibration displacement of 
rectangular cylinders) as shown in Figure 1. 
 

 

Figure 1: Architecture of machine learning prediction model 

Due to the significance of crosswind vibrations of rectangular cylinders, a series of studies have been 
made to advance the research of crosswind vibrations, during which a large number of wind tunnel 
test datasets have been accumulated. Such datasets (227 sets with 5574 sample points), as listed in 
Table 1, are the foundation of building ML models, which are used to train, test, and validate ML 
models. Meanwhile, in order to verify the generalization of the model, four types of crosswind 
vibration (over-coupled, coupled, semi-coupled and decoupled) that may occur on rectangular 
cylinders were randomly selected. In terms of these four types of oscillations, 6 sets of data which is 
not participated in model training and testing were set aside solely for validating the ML models. 
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3. Machine learning model training 

Five ML algorithms including 2 single learner algorithms, i.e. decision tree regression (DTR) and K-
nearest neighbor regression (KNN), and 3 ensemble methods, i.e. random forest (RF), gradient 
boosting regression tree (GBRT), and histogram gradient boosting regression tree (HISGBRT) were 
selected  to predict the crosswind responses of rectangular cylinders. K-fold cross-validation (k-CV) was 
used to evaluate performance of models. The details of this method is given in Hu and Kwok (2020). In 
this study, k was set to 10 to evaluate the model. These machine learning algorithms used in this study 
were implemented based on the scikit-learn package. 

Table 1. Datasets of crosswind vibrations of rectangular cylinders in the literature 

No Experimental resource Ti (%) B/D Sc Samples 

1 (Mannini et al., 2014) 1.00 1.50 4.50-149.84 425 

2 (Mannini et al., 2015a) 1.00 1.50 9.11-147.49 204 

3 (Mannini et al., 2015b) 0.70-16.00 1.50 2.90-154.48 944 

4 (Itoh and Tamura, 2002) 0.40 2.00 4.36-112.13 135 

5 (Zhu et al., 2017) 0.40 1.50 5.35-30.12 364 

6 (Wawzonek, 1979) 0.10 1.00 2.20-97.98 441 

7 (Mannini et al., 2016a) 0.60-3.00 1.50 4.16-118.52 594 

8 (Mannini et al., 2016b) 0.90 1.50 51.60-53.65 81 

9 (Mannini et al., 2018) 0.70-15.10 1.50 4.80-65.50 597 

10 (Amandolèse and Hémon, 2010) 0.90 1.00 9.26 33 

11 (Washizu et al., 1978) 0.30 2.00 3.00-60.00 125 

12 (Massai, 2016) 0.70 1.50 7.18-8.27 46 

13 (Santosham, 1966) 0.05 2.00 10.74-426.93 153 

14 (Bearman et al., 1987) 0.04 1.00 10.97-68.56 130 

15 (Borri et al., 2012) 0.50 0.71-1.40 9.22-20.88 144 

16 (Gao and Zhu, 2017) 0.90 2.00 6.89-52.60 109 

17 (Hémon and Santi, 2002) 4.00-7.50 2.00 71.00 207 

18 (Hémon, 2012) 0.90 1.00 116.88-146.93 63 

19 (Laneville, 1973) 0.07-12.70 1.00-2.00 17.90-35.80 183 

20 (Miyata et al., 1983) 0.05-11.00 1.00-3.00 2.00-80.00 260 

21 (Parkinson and Brooks, 1961) 0.25 1.00 10.05-41.01 53 

22 (Smith, 1962) 0.40 1.00-3.00 5.55-63.96 283 

23 Total 0.04-16.00 0.71-3.00 2.00-426.93 5574 

During the training process, hyper-parameters optimization is indispensable in order to achieve the 
best performance for the ML models. The gridsearch (GS) method, as a straightforward optimization 
method, aims to find out the best combination of multiple parameters at their given ranges. After 
roughly determining the potential range that the optimal hyper-parameters fall into based on GS, the 
Particle Swarm Optimization (PSO) algorithm was used to further determine the exact optimal hyper-
parameters of the ML model, for which PSO extension toolkit pyswarms was used. 
 

4. Results and analyses 

4.1 Performance of different ML models 

R-squared scores of these models based on testing datasets are given in Figure 2 (a)-(e). Evidently, the 
DTR model has the worst performance among the five models. The GBRT model exhibits the largest 
score compared to the other models. The superiority of the GBRT model is further proven by the lowest 
MSE values among these five models calculated by the predictions of crosswind response and all 
testing data as shown in Figure 2 (f). Therefore, the GBRT model with its optimal hyper-parameters 
was considered as the best ML model in predicting the crosswind responses of rectangular cylinders. 

4.2 Generalization ability of the optimal ML models 
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As shown in Figures 2, although the GBRT model presents the best performance in the testing datasets, 
it is necessary to verify its generalization ability. Meanwhile, the R- squared score and MSE of the four 
models, i.e. KNN, RF, GBRT and HISGBRT, only exhibit slight differences. Hence, the four models with 
their optimal hyper-parameters were all used to predict the crosswind responses of rectangular 
cylinders from the validation datasets. As shown in Figure 3, four different types of crosswind 
vibrations together with two high turbulence intensity cases were covered in this validation process, 
in order to comprehensively validate the generalization capability of the four models for predicting 
various types of crosswind vibrations of rectangular cylinders. 

 

Figure 2: Comparisons of R-squared score and mean squared error of ML models 

As shown in Figure 3 (a), the four models accurately predict the over-coupled vibrations of rectangular 
cylinders. For the coupled type of crosswind vibrations shown in Figure 3 (b), the crosswind responses 
predicted by the KNN model are highly consistent with the experimental data. The predictions of the 
other three models exhibit a similar trend as the experimental data despite discrepancies between 
predictions and experimental data. In Figure 3 (c), all models accurately predict the responses at low 
reduced velocities, but the predictions are not ideal at high reduced velocities, possibly induced by the 
limited amount of training datasets. What’s more, the KNN model shows the worst performance. 
Meanwhile, three models, including KNN, GBRT and HISGBRT, provide accurate predictions for the 
decoupled type of vibrations except at high reduced velocities in Figure 3 (d). The RF model obviously 
overestimates crosswind responses. Besides, two additional high turbulence cases were tested and 
shown in Figure 3 (e) and (f). The excellent performance of the RF and GBRT models in these two cases 
demonstrates that these two models are more appropriate than the KNN and HISGBRT models to make 
predictions on the crosswind vibrations of rectangular cylinders under high-turbulence wind. 
 
In summary, both KNN and GBRT models have the ability to predict the crosswind response of 
rectangular cylinders according to the 6 testing cases. However, based on the results of R-squared 
score and mean square errors of 5 ML models on the whole dataset, the GBRT model is finally selected 
in this study to predict the crosswind response of rectangular cylinders. 
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5. Conclusions 

This paper uses machine learning techniques to establish prediction models of the crosswind 
responses of rectangular cylinders based on a large amount of high-quality and reliable datasets 
collected from the literature. Five ML algorithms, including DTR, KNN, RF, GBRT and HISGBRT, were  

 

Figure 3: Predictions of crosswind responses of the validation cases by using GBRT 

used to build prediction models. After comparing the performance of these models, it has been found 
that the GBRT model exhibits a satisfactory performance in predicting the crosswind responses of 
rectangular cylinders in wind flow with a turbulence intensity from 0 to 16%, side ratio from 0.75 to 3 
and Scruton number from 0 to 150. Meanwhile, some non-ideal predictions may be improved by 
feeding the ML models with more datasets. Therefore, it is believed that the machine learning model 
could be a supplement to traditional wind tunnel tests and numerical simulations in future. 
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