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Cable equations have a long history and have been extensively studied by many
authors. The nonlinear static equations describing perfectly flexible and inextensible
cables under gravity loading are a common feature of elementary calculus courses,
since closed-form catenary solutions exist. For more complicated geometries and
loadings, this is not the case and even the static equations must be integrated
numerically.

Of considerable importance is the issue of vibration in cables. As an example,
consider electricity transmission cables, where the continuous buffeting by wind
gusts induces transient waves which contribute to fatigue at the fixture points to
the tower. Clearly, for this case, an understanding of transient phenomenon may
aid in reduction of fretting and reduced failures through improved designs.

Transient solutions to cable equations have been studied primarily as small per-
turbations to static solutions. Much recent progress has come from Caughy and
coworkers at CalTech (e.g. Caughy and Irvine, 1974), who have examined the small
vibration of elastic cables. More recently Watts and Frith (1981) have considered
the numerical solution of the nonlinear equations governing the large vibrations of
an initially straight and taut elastic cable.

Elastic cables contain two separate and distinct time scales: the longer transient
sway time of the cable as a pendulum, and the typically much faster time for longi-
tudinal elastic waves to run back and forth along the cable. Most previous studies,
including the ones cited above, have been concerned with the transient behavior on
the longer time-scale and have not considered the interactions with the much faster
elastic waves. It has been tacitly assumed that the magnitude of elastic displace-
ments must be small in comparison to motion of the cable due to loadings applied
along the length of the cable. But elastic forces can be very large and it should not
be assumed automatically that the tension associated with small elastic motions is
minuscule in comparison to that arising from the gross cable motion.

This note presents some preliminary results from a new numerical scheme that
is capable of integrating the complete nonlinear equations of motion. The time-
stepping is fully implicit, and so is unconditionally stable, and the technique is
robust enough to resolve the fine detail necessary to observe the elastic waves.

A coordinate system s is engraved on the unstretched cable with the initial
coordinate length s;. The physical length of the loaded cable will change due to
elasticity but the coordinate system is fixed at length s;. The positions and tension
of the cable are described by R(s,t) and T'(s,t) as functions of s and time t. The
cable spans a horizontal distance [ along the z-axis of a coordinate system and two
forces are in action: gravity acting vertically downward, and a velocity squared
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air-drag acting in the direction of the velocity normal to the cable. The cable is
extensible with the modulus EA, where E is the Young’s modulus and A4 is the
cross-sectional area of the unloaded cable.

The equations of motion of the cable are given by
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The extensibility of the cable is given by
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but a more useful form can be obtained by forming the dot product of 2 BR and (1).

Equations (1) and (5) constitute two nonlinear partial dlfferentlal equatlons
which can be nondimensionalized using the span [ and the sway time 7, = \/l/g.
This selection leads to dimensionless (barred) quantities
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and the elasticity parameter
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which is related to the ratio of the characteristic times for the vibrational and
transverse motions,
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Dropping the bar notation, the dimensionless equations are rewritten
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and the fixed boundary conditions are given by R(0,¢) = 0 and R(s;,t) = e,.

The solution to the static cable equations can be expressed as a perturbation se-
ries in the small parameter €. Attempting to extract the elasticity from the dynamic
equations via a similar method fails, however, due to the presence of phenomenon
on multiple time and length scales. The procedure of multiscaling has, so far, not
been successful in ascertaining the appropriate form of an expansion, and the full
nonlinear equations must be integrated directly for specific €’s.

Calculations are performed by replacing all partial derivatives with respect to
time by backwards difference operators and then solving sequentially a series of
spatial problems by the relaxation method (Press et al., 1986). Stump and Fraser
(1994) have used this method to integrate the inextensible cable equations that
arise during the wool manufacturing process of ring spinning and have obtained
rapid solution.

The importance of elasticity in the equations is illustrated in the following ex-
ample. Consider a cable that is hanging under gravity and a steady crosswind. At
time ¢t = 0 the wind is increased by 10% and it is desired to calculate the transient
behavior as the cable moves into it’s new configuration. For example purposes, we
use the parameter values

sp=2, e= 0001, D, =10, V=10j

(Assuming a value of [ = 30 meters, the magnitude of V corresponds to a sustained
wind of 62 km/hour. The value of D,, is reasonable given the model of a cylinder in
turbulent flow.) The steady-state profile of the cable is essentially identical to the
results for the inextensible model (i.e. € = 0).

At time t = 0, V = 1.1j is applied and the computational procedure is used to
calculate the response. In order to adequately capture the effects of elasticity a large
number of spatial dicretization points and small time steps are required. Spatial and
temporal phenomena occur on the scales of order s/ /e and ¢//€ and the grid in
domain of (s,¢) space must be refined in comparison to these dimensions. For this
problem, 750 spatial points along the cable of length s; = 2 were used and several
different time steps were tried.

Figure 1 shows the percentage increase in the fixture-point tension T'(0,t) with
respect to the initial steady-state value as a function of time. Calculations were
performed using time steps of é¢ = 0.001, 0.005 and 0.01. The fractional change in
tension over the interval 0 <t < 10 is shown in figure la for the largest time step
and clear shows the damped sway of the cable on the order of 7,. Figure 2 shows
the shorter time response over 0 < ¢t < 2 for all three time steps. The effects of
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elasticity are significant in the initial response and cause a series of large tension
waves to impact the boundary.

Results for other parameter values and different magnitude wind gusts have
shown similar effects and confirm that the presence of elasticity can cause a decaying
oscillatory behavior that is not predicted by the inextensible model and which may
be significant in promoting fatigue since the initial magnitude of the spikes is not
small.

In summary, the effects of elasticity are intrinsic to the nonlinear equations of
motion and linearization schemes have not been successful in extracting the behavior
while retaining the essential phenomena. This preliminary work shows that tran-
slent tension waves due to elasticity may be much larger and have more important
consequences than has been previously appreciated.
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Figure 1. Plot of fractional increase in tensjon versus time for §t = 0.01.
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]:.T‘igurfe 2. Plot of fractional increase in tension versus time for 6t = 0.001 (solid
line). 5t = 0.005 (long dash line), and 6¢ = 0.01 (short dash line)
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