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ABSTRACT 

Over the past decade, machine learning (ML) has drawn much interest in wind engineering 

applications. Previous machine learning-based studies for wind load predictions for tall 

buildings have mostly been restricted to time history or static pressure without considering 

the spatial coordinate system. ML models need to predict both the spatial distribution and 

transient wind flow to design wind-sensitive tall buildings. Thus, utilising a three-

dimensional (3D) spatial coordinate system, this study employed ML to predict the transient 

wind pressure on a tall building. Transient pressure data on building surfaces were obtained 

through computational fluid dynamic simulations, which were validated using wind tunnel 

data. The extreme gradient boosting (XGB) model was chosen as the machine learning 

model, and it obtained good prediction accuracy in both training and testing. Furthermore, 

over the building surfaces, unique flow phenomena such as flow separation, and steep 

pressure gradients have been well predicted by the XGB model. As a result, this work 

demonstrates how machine learning may be used to predict wind loads on tall buildings and 

capture important flow characteristics.  

INTRODUCTION 

Tall buildings are quite sensitive to wind forces and wind-induced vibrations, posing challenges to 

their structural integrity and serviceability.  Therefore, accurate wind pressure estimation is crucial for 

ensuring the safe and cost-effective design of tall buildings (Hu et al., 2020).  Generally, wind tunnel 

experiments and computational fluid dynamics (CFD) simulations are employed to investigate the 

wind loads occurring on tall buildings.  Although wind tunnel experiments are highly reliable, they 

are resource-intensive, costly, and require time and expertise.  On the other hand, numerical methods 

like CFD modelling may require high computational resources depending on the simulation and also 

need expertise and time.  Considering these limitations in both approaches, the wind engineering 

community has turned to data-driven methods, such as machine learning (ML), to predict the wind 

loads on tall buildings.  

Machine learning (ML) is generally used to learn from data and identify patterns within it.  For this 

reason, it is increasingly being applied in civil, structural, and wind engineering applications (Kareem, 

2020).  The importance of machine learning in the wind engineering domain holds several 

advantages.  ML can learn from data and predict patterns more time-efficiently compared to 

numerical and experimental methods (Brunton et al., 2020).  Moreover, once a machine learning 

model is properly trained, obtaining its predictions requires no significant expertise or computational 

expense.  With such advantages, machine learning-based predictive models can be used in wind 

engineering as a complementary tool to numerical and experimental methods.  

Recent advancements in ML, including artificial neural networks (ANNs) and tree-based models like 

mailto:p.meddage@unsw.edu.au
mailto:d.mohotti@unsw.edu.au
mailto:k.wijesooriya@unsw.edu.au
mailto:chi.k.lee@unsw.edu.au


22nd AWES Wind Engineering Workshop, Townsville, 20-21 June, 2024 

random forest (RF) and extreme gradient boosting (XGB) have been applied successfully to predict 

wind pressures of buildings.  For example, Dongmei et al. (2017) used an ANN model to predict static 

wind pressure on a tall building (490 m) with a square cross-section of 57 m x 57 m.  Similar work 

was conducted by Shruti et al. (2021) to predict the static wind pressure on a square-shaped tall 

building with a height of 160 m.  Hu et al. (2020) used tree-based models, including RF and XGB, as 

well as a generative adversarial network (GAN), to predict the static pressure on a tall building (280 

m).  All these studies suggested that neural network methods and tree-based models are effective in 

capturing variations in static wind pressure on tall buildings. 

However, machine learning methods have been rarely employed for transient wind pressure 

predictions.  Recently, Chen et al. (2022) used a wavelet neural network to successfully predict 

transient wind pressure on a rectangular tall building.  Their models achieved a Pearson correlation 

(R) of 0.99 for the transient pressure predictions and highlighted the need for further research.  

Despite their model's accuracy, they did not consider the spatial coordinates of the pressure taps as 

inputs for the ML model.  Including both spatial and temporal behaviour (changes over time) in a ML 

model to predict transient pressure on a tall building is both important and challenging.  ML models 

need to be able to predict transient wind pressure on a tall building while maintaining spatial 

correlations in the predictions.  Such analysis would demonstrate the ability of ML models to identify 

special flow features and localised variations on building surfaces that change over time. 

In consideration of this, the present study uses machine learning to model transient wind pressures on 

the CAARC tall building by incorporating three-dimensional spatial coordinates as additional inputs.  

This approach utilises a combination of wind tunnel data and computational fluid dynamics (CFD) 

simulations to train the ML models, allowing for more accurate predictions of complex wind 

interactions on building structures.By integrating ML with validated CFD models, the study offers a 

fast, reliable, and cost-effective method for predicting wind pressures, which can serve as a 

complementary predictive tool.  

WIND TUNNEL EXPERIMENT  

This section describes the experimental setup and methodology used to assess wind pressures on the 

CAARC tall building, a commonly used structure in wind engineering research.  The building model 

was scaled down to a 1:300 ratio, and the wind tunnel tests were conducted at the boundary layer 

wind tunnel (BLWT) at the University of Sydney.  The model was fabricated from plywood to ensure 

a smooth finish that matches the surface texture used in numerical modelling.  The dimensions of the 

model were 600 mm in height, 150 mm in length, and 100 mm in breadth, maintaining a blockage 

ratio of 1.2%.  Figure 1.a shows the setup used for the wind tunnel experiment at BLWT at the 

University of Sydney.  

Initially, the tests were conducted without the building model to establish velocity and turbulence 

profiles according to the TCIII terrain specifications as defined in AS/NZS 1170.2:2011.  After 

achieving the required velocity and turbulence profiles, tests with the building model involved 

measurements of surface pressures.  These measurements were taken using 198 pressure taps 

distributed across the building’s facade, with data collected at 2 kHz to capture transient wind 

pressures.  The freestream velocity was maintained at 12 m/s and the Reynolds number measured at 

the top of the building was 4.4 x 105.  

NUMERICAL MODELLING 

Following the wind tunnel experiment, the experimental setup was modelled in ANSYS FLUENT 

2023 as a rigid building in a rectangular domain as shown in Figure 1.b.  The mesh of the domain was 

converted into 1.56 million polyhedral elements which can result higher accuracy and reduced 

computational time compared to typical tetrahedral mesh.  A finer mesh was used near the building 

and a coarser mesh in the outer regions.  Twelve prism layers with a growth ratio of 1.1 were 

introduced to capture the boundary layer around the building, maintaining the dimensionless wall 
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distance (y+) < 5.  A no-slip boundary condition was applied to the ground and building walls, with 

pressure-velocity coupling handled by the Semi-Implicit Method for Pressure-Linked Equations 

Consistent (SIMPLEC).  

First, the empty domain (without CAARC building) was validated by using wind tunnel data for mean 

velocity profile U(z), turbulent kinetic energy (TKE), and specific dissipation rate (SDR).  The k-ω 

model was initially used for the Reynolds averaged Navier Stokes (RANS) simulations to achieve 

steady state convergence (1 × 10⁻6) before large eddy simulations (LES).  Next, the empty domain 

was simulated using Large Eddy Simulation (LES) for 10 s with a time step of 5 × 10⁻⁴ s.  During this 

time, velocity time histories at 0.6 m upstream of the building were extracted to calculate turbulence 

intensity, velocity profiles, and turbulent power spectrum profiles.  These profiles were validated 

using corresponding data obtained from wind tunnel experiments.  Subsequently, the validated 

profiles were applied to the domain containing the building, and Reynolds-Averaged Navier-Stokes 

(RANS) simulations were executed until convergence at a tolerance of 10⁻⁶. LES was commenced 

with velocity fluctuations applied through the vortex method at the inlet.  Using monitor points on the 

building surface, transient pressure at each time step was extracted.  Transient simulations ran for 10 s 

with a 5 × 10⁻⁴ s time step, matching the wind tunnel experiment's sampling frequency (2000 Hz).  

The simulations, executed on 32 cores, took 164 hours and were conducted for a single wind direction 

(θ=0⸰).  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1: (a) Wind tunnel experiment setup (b) Numerical model of the building (c) Validation 

of velocity and tubulence intensity profiles (d) Turbulence power spectrum  

Transient pressure records were structured into a data frame by specifying the 3D spatial coordinates 

of each point on the building (x,y,z), surface and the flowtime as the input parameters whereas time-
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dependent pressure coefficient, Cp(t) was the dependent parameter for the machine learning model.  

The total dataset consisted of 4.56 million data points. 

MACHINE LEARNING MODEL  

The popular tree-based model, extreme gradient boosting (XGB), was used to predict transient 

pressure using the dataset obtained from numerical modelling.  XGB is a state-of-the-art model that 

has been successfully applied in wind engineering research applications.  It operates through multiple 

decision trees and can learn complex hidden patterns within a dataset.  To train the XGB model, 70% 

of the data was used, with the remaining 30% reserved to test the model's ability to generalise to 

unseen data.  The XGB model was optimised using a grid search method available in the Sci-kit learn 

library, focusing on critical model parameters such as tree depth, number of estimators, and learning 

rate.  The optimised settings included a tree depth of 16, 100 trees, and a learning rate of 0.2.  These 

parameters helped the model achieve its optimised predictive performance.  

RESULTS AND DISCUSSION  

Figure 2 shows the overall training and testing accuracies of the XGB predictions compared to the 

numerical results.  The training accuracy of XGB predictions reached R² of 0.958, while the testing 

accuracy was R² = 0.936.  The XGB model accurately predicted extreme suction pressure (-8 < Cp(t) 

< -6) and higher Cp(t) values (> 4) within a 10% margin of error.  Overall, the predictions are reliable 

for wind engineering applications related to tall buildings.  

  

(a) Triaining set (b) Test set 

Figure 2: Comparison of XGB models’ transient wind pressure predictions 

It is noteworthy that the five surfaces of the building have different aerodynamic flow characteristics.  

The windward wall mainly experiences positive pressure whereas the crosswind and root surfaces 

undergo intense negative pressure and intermittent vortex formation as a result of flow separation.  

The leeward wall faces the flow-recirculating wake region with negative pressures. 

Based on these flow characteristics, the predictions were evaluated for each building surface, as 

shown in Table 1.  During the training phase, the highest correlation (R) between predictions and 

numerical results was on the roof (R = 0.976) while the lowest correlation was observed for the 

windward and crosswind A walls (R = 0.970).  Despite its lower correlation, the windward wall had 

the lowest mean absolute error (MAE = 0.095) and root mean square error (RMSE = 0.168).  This is 

because the windward wall mostly experiences positive pressures with lower magnitudes, resulting in 

smaller prediction errors compared to the magnitude of negative Cp(t) values on remaining surfaces. 

Table 1: Analysis of statistical indices of XGB predictions compared to CFD results 

Surface Correlation (R) MAE RMSE 
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Windward wall 0.970 0.095 0.168 

Leeward Wall 0.972 0.145 0.236 

Crosswind A wall 0.970 0.139 0.222 

Crosswind B wall 0.972 0.134 0.212 

Roof 0.976 0.121 0.190 

Surface Correlation (R) MAE RMSE 

Windward wall 0.945 0.140 0.253 

Leeward Wall 0.963 0.165 0.269 

Crosswind A wall 0.955 0.165 0.266 

Crosswind B wall 0.956 0.161 0.257 

Roof 0.965 0.141 0.220 

In contrast, remaining surfaces like the roof and crosswind walls are subjected to extreme negative 

pressures due to intense flow separation.  Also near the leading edges of these walls, the turbulence is 

higher which can result in higher fluctuations in the wind pressure. Therefore, in those regions, the 

model predictions can have minor deviations, resulting in slightly higher MAE and RMSE values 

compared to the windward wall predictions.  During XGB testing, similar trends in the CP(t) 

predictions were observed.  The Cp(t) predictions on the roof attained the highest correlation (R = 

0.965) and the lowest RMSE (0.220) while the windward wall predictions had the lowest MAE 

(0.140).  These results demonstrate the XGB model's ability to predict transient pressure values 

accurately, especially on surfaces with different wind flow characteristics and higher fluctuations.  

It is also important to observe the pressure contours generated by the ML to determine the consistency 

of the prediction over the building surface.  Figure 3 shows the variation of Cp(t) at a flow-time of 

7.9805 seconds for both CFD and ML models.  

 

Figure 3: Comparison of wind pressure contours on the building at flowtime = 7.9805 s 

On the windward wall, the positive pressure region with Cp(t) = 1 is present in the top third in the 

CFD simulation and it extends to the middle third in the ML predictions.  Both models agree on the 

pressure variation near the windward wall's leading edges.  The ML model predicted a region with 

Cp(t) = 0.6 near the ground level of the windward face, whereas the CFD model showed a lower value 

of 0.4 in the same area.  The deviations can be explained by the tendency of the ML model to smooth 

out sudden changes in positive pressure observed in CFD results.  On the leeward wall, a steep 

pressure gradient in the upper third region was accurately predicted by the ML model.  The ML 

pressure distribution shows a large portion of the leeward wall with Cp(t) = -0.6, which is slightly 
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different from the CFD simulations.  The minimum pressure observed on the crosswind wall was -3.6 

in the numerical simulations, while the ML model predicted around -3.  Despite minor deviations, the 

overall flow features are comparable between both models.  Crosswind wall B shows good agreement 

between the pressure profiles from CFD and ML models at the same flow time.  The roof pressure 

was also accurately modelled.  In general, the ML model achieved a good accuracy and effectively 

predicted important flow features that change with time.  Overall, the ML model is competent in 

modelling and accurately reconstructing pressure profiles obtained from numerical simulations. 

In terms of computational efficiency, large eddy simulations (LES) took 164 hours to run a 10-second 

simulation, while the trained XGB model required only 4 seconds to produce wind pressure 

predictions.  This highlights the potential of ML models in wind engineering as a complementary tool 

to support practicing engineers.  It is important to note that these ML models cannot replace numerical 

simulations or wind tunnel experiments rather they can be used for wind pressure predictions on tall 

buildings as a complimentary tool.  These ML models can be further improved by including different-

shaped tall buildings, various surrounding conditions and terrain categories to develop a more 

generalised predictive tool for tall buildings. 

CONCLUSION 

This study successfully applied machine learning to simulate transient wind pressures on the CAARC 

tall building with an along-wind attack angle (θ = 0°).  The machine learning (ML) model 

demonstrated high accuracy in predicting transient wind pressures, especially in areas with flow 

separation and high building-induced turbulence.  While there were minor deviations, these 

predictions were within acceptable limits for wind engineering applications.  The ML model 

accurately reconstructed complex flow features such as flow separation and steep pressure gradients, 

demonstrating its ability to capture dynamic flow characteristics over the building surfaces.  Given its 

efficiency and accuracy, ML has the potential as a surrogate modelling tool in wind engineering.  It 

offers a faster, less resource-intensive alternative for predicting time-dependent pressures on 

buildings, which is crucial for design and analysis. 
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