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1 INTRODUCTION

The Dines, or pressure-tube, anemometer, consists of a large-diameter pitot tube mounted on a
vane, connected to a uniqgue manometer. This manometer consists of an open-bottomed tapered
float in a water tank, with the pressure tube from the pitot head feeding into the air space in the
float. As the wind speed rises, the pressure inside the float increases and the float rises, moving
the recording pen. Further information on the instrument may be found in [1] and [2]. The Dines
anemometer is now obsolete in Australia, having been largely replaced by cup anemometers.
Nevertheless, historical records from the instrument are important to understanding the wind
hazard climatology, not least since two of the strongest gusts ever recorded on the Australian
mainland, in Tropical Cyclones Tracy of 1974 and Vance of 1999, were recorded on Dines
instruments.

The behaviour of cup anemometers in turbulence has been extensively studied, but
comparatively little similar work has been done on the Dines, and this has mostly focussed on the
mean, rather than the transient, response. Here, we present results from a newly developed
physical model of the transient response of the Dines anemometer. Two previously observed
resonances are confirmed, and their physical mechanism described. A third low-frequency
oscillation, not previously known, is found in the model and it is shown that the instrument may
overspeed, albeit for different reasons to cup anemometers.

2 MODELLING THE FLOAT CHAMBER

The manometer of the Dines anemometer as illustrated in Fig. 1 has a complicated geometry,
designed to produce a steady-state float displacement that is linear in the applied wind speed.
This geometry complicates the analysis, so for convenience a simpler geometry will here be
assumed: (i) The cross-sectional areas of the water inside and outside of the float are equal; (ii)
The float and containing vessel have parallel sides; (iii) The pressure in the suction chamber is
constant, or equivalently, the suction chamber is open to the atmosphere; (iv) The movement of
the float and liquid experience Newtonian damping with time-scales _1 and _2 respectively; and
(v) The relative motion of the float and liquid is Newtonian damped with time-scale _3, to
represent the choke at the bottom of the float (see Section 2.2). The float chamber is then nearly
equivalent to a U-tube manometer with a frictionless piston supported by some trapped air in one
arm, and forced by varying the amount of trapped air. Figure 1 sketches the successive
approximations, from tapered float, to parallel-sided float, to U-tube. In the U-tube, the piston
represents the Dines float, and the manometer liquid by the water in the Dines float chamber.
The trapped air between the piston and the manometer liquid corresponds to that inside the
Dines float, and acts as a spring between the two masses.

The variables in the system are the positions and velocities of the piston and manometer liquid
and the pressure of the trapped air. The independent variables are the piston mass, the tube area,
the amount of trapped air, the pressure of air in the suction chamber, and the mass of the liquid.
The equations governing the system are given by [3]. Linear analytic solutions and numerical
solutions (by fourth-order Runge-Kutta integration) were obtained.
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Figure 1: The Dines anemometer float chamber and successive approximations. The left panel
shows the classic Dines manometer, with the float of tapered cross-section designed to produce a
displacement that is linear in wind speed. The central tube feeds the pressure at the pitot tube
entry into the interior of the float. Blue shading represents water. The middle panel approximates
the float as having parallel sides. The right panel has similar topology to the other panels, but
approximates the liquid as moving as a single mass in a U-tube. The float is represented as a
piston in one arm of the tube, supported above the liquid by the trapped air. The notation is that
x1 represents the position of the piston, x2 the position of the liquid top in the piston arm, and xe
the equilibrium position that the liquid would take if the piston was removed. Distances are
measured from the bottom of the U-tube, with the piston arm being positive. The left and centre
drawings are from [2].

2.1 Undamped behaviour

Kepert [3] considers coupled sinusoidal oscillations of the system, and shows that there are two
natural frequencies. Expressions are given for the frequencies and relative amplitudes of the float
and water. The lower frequency oscillation has the liquid and piston in phase, while the higher
frequency one has them in opposite phase.

A time-series plot of simulated motion for the full equations is shown in Figure 2. This example
clearly shows periods where the liquid and piston oscillate in phase (e.g. 690 — 770), and periods
where they are out-of-phase. Apparently both oscillations are present and beating is occurring;
see further discussion of this case below. The mean position of the float (black line) is significantly
displaced from its equilibrium position x1e (lighter blue line). In the usual anemometer parlance,
the instrument is overspeeding; that is, the measured mean wind speed has a positive bias. In
contrast, the mean liquid position is indistinguishable from x2e (light green line).

The power spectra of float and water position for this simulation are shown in Figure 3, with the
frequencies from the linear analysis, !1 and 12, indicated by the filled diamonds. The spectrum is
dominated by broad peaks around w; = 0.6037, w, = 1.2347, and the harmonics thereof. The
nonlinearity is evident from the relatively large amplitudes of the harmonics, and from the
broadness of the peaks. Reducing the amplitude of the oscillations by changing the initial
condition leads to narrower spectral peaks and fewer spikes, confirming the role of nonlinearity.
There is significant power in the motion of the piston, but not the liquid, at frequencies below 0.3,
while the power is more similar for other peaks in the spectrum.

We now consider the cause of the overspeeding. Figure 4 shows a longer version of Figure 2,
including also the low-pass filtered float position, which is a maximum when the water and piston
are most obviously out-of-phase, and a minimum when they are in-phase. The trapped air acts as
a nonlinear spring — the force required for a given incremental displacement is larger when the air
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Figure 2: Time series of
simulated Dines
manometer. The upper
panel shows the float
(blue) and liquid (green)
position, and the lower
panel shows the
respective velocities. The
lighter lines in the upper
panel show the
equilibrium(i.e. zero-
motion) positions of the
float and liquid, and the
black line shows the mean
position of the float
(calculated over a much
longer period than that
shown here).

Figure 3: Power spectra of
float (blue curve) and
water (green curve)
positions from the
simulation in Figure 2. The
diamonds indicate the
frequencies for the
coupled oscillation from
the linear analysis.

Figure 4: As in Figure 2,
except for a longer period.
The thick lighter blue
curve shows the low-pass
filtered piston positions.
The similar green curve is
indistinguishable from the
water mean position.
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Figure 5: Photograph of the lower end of a
Dines anemometer float, showing the choke.
The pressure tube enters up the hole in the
middle, almost filling it.

is already compressed from its equilibrium position, than when it is rarefied. Thus, as the
amplitude of the out-of-phase oscillation increases, the piston will experience a nonlinear
increase in the upwards force it experiences at the bottom of its cycle, when the water rises to
meet it. This appears sufficient to increase its mean position over that that would occur with a
smaller-amplitude, more linear, oscillation.

2.2 Damping the relative motion

In a real Dines anemometer, the bottom of the float is not open, but contains a constriction,
shown in Figure 5. We have not been able to discover any literature on this feature, and so the
reasons for its inclusion in the design are unclear. However, it will clearly have a damping effect
on the relative motions of the float and the liquid, and was the motivation for the inclusion of the
damping of the relative motion in the equations of motion.

Figure 6 presents plots summarising the response of the model to sinusoidal forcing of various
frequencies, with t3# 0. It is clear that the out-of-phase (i.e., higher frequency) resonance is
weaker than the in-phase (lower frequency) with these settings, as is physically reasonable. In the
late 1960’s, Borges [4] conducted laboratory experiments with a pressure-tube anemometer float
chamber, in which sinusoidal pressure forcing was applied. He presented a graph showing the
amplitude and phase of the float response, reproduced here as Figure 7. Clearly, this figure is in
good agreement with Figure 6(b, c). Note that [4] presents results for several different mean wind
speeds. Variation in the mean wind speed changes the mean mass of trapped air, and hence the
resonant frequencies. The results of Borges suggest that the magnitude of the out-of-phase
resonance is wind-speed dependent, consistent with other simulations with the model, but full
investigation of this phenomenon in the model awaits further investigation.

3 DISCUSSION

A simplified model of the Dines anemometer has been developed. Solution of the linearised
equations reveal two fundamental frequencies, corresponding to oscillations in which the water
and float are either exactly in or exactly out of phase. The former oscillation has the lower
frequency. Numerical solutions reveal that the linear solution well captures the dominant
frequencies, and that the numerical solutions contain additionally a rich array of harmonics and
interharmonics of the linear frequencies. Nonlinearity in the out-of-phase oscillation leads to a
positive bias in the mean measurement (overspeeding), the magnitude of which depends on the
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Figure 6: A summary of the
behaviour for the forced
damped system. Each panel
shows the system behaviour
as a function of forcing
frequency, with the natural
frequencies indicated by
magenta diamonds.
Parameters are shown at
top left, notation as in [3].
(a): the mean piston and
water position, relative to
that expected for steady
forcing. (b): the amplitude of
the piston and water
oscillations, normalised by
the expected piston
amplitude from the
calibration equations. (c):
the phase difference
between the forcing and the
response.

Figure 7: The relative
amplitude (top) and phase
(bottom) of the float
movement, as a function of
forcing frequency, for a
variety of tubing lengths.
Reproduced from [4]; Figure
5.
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amplitude of the oscillation. Numerical solutions of the forced damped equations reveal that
resonances can occur at one or both of the linear frequencies, depending on the precise
circumstances. The amplitude of these resonances can be greater than that implied by the
forcing, so the magnitude of gusts at these resonant frequencies may be overestimated. The
model is capable, with some tuning of the unknown parameters, of reproducing the results of
previous laboratory investigations into these resonances.
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