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DISCRETE VORTEX SIMULATION OF FLOW OVER A BLUFF BODY
*
K.Hourigan
Introduction

A feature very prominent in high Reynolds-number flows around bluff bodies
is that of separation of turbulent shear layers, which may or may not
reattach. From a numerical modelling point of view, it can be convenient to
view these flows as being characterized by regions of concentrated vorticity
embedded in irrotational fluid. The local fluid velocity, which 1s determined
kinematically from the vorticity field, then determines the inviscid motion of
the vorticity. This type of flow is simulated by the discrete-vortex model by
replacing the regions of vortieity concentration with elemental vortices, whose
motions are followed in a Lagrangian reference frame. Thus, provided the
location and rates of vorticity production can be specified fairly readily, the
costly exercise of solving the full Navier-Stokes equations can be avoided.

Although the discrete-vortex model was first devised over fifty years ago
[1], most of its development and application have taken place in more recent
years. It has been successfully applied to the simulation of the roll-up of
free vortex sheets [2]. However, some ad hoc assumptions in respect of
vorticity loss have had to be introduced in problems where reattachment of the
shear layers takes place. That is, it appears that surface viscous effects
cannot be ignored. Successfully incorporating these effects into the discrete
vortex model remains a challenging problem.

In this paper, the various steps involved in the construction of a discrete—
vortex model are discussed. The simple geometry of the example problem
provided, viz. flow over a forward-facing step, allows a falrly straightforward
analysis of the basic ingredients of the model. It should be noted however,
that the discrete-vortex model is, in principle, capable of simulating flows
around some of the more complex geometries that are encountered in wind
engineering and industrial aerodynamics.

Description of the Model

The geometry of the flow situation of interest is shown in Figure 1(a). It
is important in the first instance to be able to identify points of significant
vorticity production. The top corner of the step is obviously one such point
where separation occurs. The separated shear layer is then represented by a
system of line vortices. 1In order to satisfy the condition of zero flow normal
to the solid boundary, a transformed complex plane is considered in which image
vortices are appropriately positioned. In the present problem, the region in
the physical z plane representing the flow region was conformally mapped onto
the upper half of another complex plane, the A plane.

The complex velocity potential ¢ then consists of two components due to the
irrotational flow @i and the flow induced by the vortices &
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where V0 is the velocity at upstream infinity, H is the step height, A, is the
location of the jt vortex, A¥ denotes its complex conjugate, and G. reﬁresents
its circulation. The velocityJ field u-iv in the physical plane is given by
d¢/dz except at the vortex points where it is given by
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A time—stepping integration scheme is then introduced to follow the evolution of
the vortices according to these non—linear DE's.

A determination is now required of the strength G of each elemental vortex
and its nascent position. The rate of creation of vorticity at a separation
point is determined by the kinematic condition dG/dt = -%é(uz 2_), where u,
and u_ are the higher and lower speeds on either side of the separating shear
layer. Given an integration scheme timestep, the strength of each nascent
vortex can then be allotted. In order to determine the position of a nascent
vortex, the Kutta condition is invoked. This condition requires that the
velocity d¢/dA at the point in the transformed plane corresponding to the step
corner is zero.

The initial conditions are now completely specified. It is found however in
the present problem that restricting vorticity generation to the leading edge
does mnot produce a satisfactory simulation. In order to match experimental
results, it has been found necessary by users of the discrete—vortex model to
incorporate a temporal reduction of circulation of the elemental vortices (e.g.
(3] ) Although this is inconsistent with vorticity conservation required by
inviscid—flow theory, it has been suggested that the circulation reduction
allows for viscous and three-dimensional effects that would occur in real flows
[4]. However, here it is argued that generation of vorticity of opposite sign
to that generated at the leading edge will take place along the step surface.
From the momentum equation and the condition of no-slip, it can be shown that
the flux of circulation is proportional to the pressure gradient along the
surface. A separation bubble represents a region of sustained large pressure
gradients and therefore a source of significant vorticity. The overall
circulation is then reduced as a result of diffusion of this opposite signed
vorticity.

Often of interest in practical applications, of course, are the pressure and
velocity distributions, especially mnear the surfaces. The instantaneous
velocity field can be found from the velocity potential as mentioned above. The
instantaneous pressures p can be determined from the model by making use of the
Bernoulli equation for the pressure coefficient C
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where Pyis the pressure of the free stream and p is the density of the fluid.

Numerical Results and Discussion

In this section, some sample results of the model described above are
included. Figure 1(a) shows a snapshot of the positions of the elemental
vortices at a time when the mean flow had become statistically stationary. The
roll-up of the shear layer into larger-scale vorticial structures can perhaps be
seen more clearly in Figure 1(b), which shows the trajectories of the elemental
vortices over a short time period. It can be seen that the shedding of vortices
from the separation bubble does not take place periodically, in line with
experimental results. The vortices traversing the surface are of varying size
and the vortex spacing 1s irregular.

In Figure l(c), the fluctuating surface pressures, at the same instant of
time as above, are shown in addition to the time-mean surface pressure
distribution. Comparing Figures 1(b) and 1(ec), it can be seen that the

fluctuating surface pressure is negative beneath the large-scale vortices and
positive in the regions between these vortices.
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In conclusion, the discrete-vortex model 1is found to be capable of
simulating at least some of the gross characteristics of separated flow from a
leading edge. A feature of the model is its ability to predict instantaneous
velocities and pressures, the knowledge of which is important in areas such as
structure design and heat transfer. Furthermore, prediction of the location of
vorticity can enable determination of sound source regions and the development
of acoustic resonances [5].
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Figure 1: (a) snapshot of elemental vortex positions
(b) vortex trajectories B
(¢c) mean surface-pressure coefficient (¢ (broken line) and surface-

pressure fluctuations p' (solid line).?



