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Introduction

Knowledge of the transmission characteristics for pressure fluctuations of
small diameter tubes is important for many practical measurement situations in
wind engineering, aerodynamics and aeroacoustics. Although the theoretical
problem of propagation of sound waves in gases in cylindrical tubing is a
classical one, associated with such famous names as Helmholtz, Kirchhoff and
Rayleigh, most of the early approximate solutions (for low reduced frequencies)
have been superseded by those developed by Iberall [1] and Bergh and Tijdeman
[2]. A review of the many existing analytical solutions has been given by
Tijdeman [3].

Recent experimental developments have been the introduction of very small
diameter restrictor tubes [4], and pneumatic averagers involving parallel tube
systems, [5]. Gumley [6, 7] extended the Bergh and Tijdeman theory to include
the pneumatic averagers, and advocated the use of the theory for designing
tubing systems in practical situations.

The interest of the Division of Building Research in the problem is
essentially a practical one - the optimization of tubing systems for the
measurement of fluctuating and peak pressures and area loads on wind tunnel
models of buildings in simulated atmospheric boundary layers. The frequency
response requirements for accurate measurements of peak pressures in these
situations have been defined [8], and an experimental rig has been set up to
carry out dynamic calibration of complete pressure measurement systems,
including pressure transducers and associated volumes [9]. The present paper
makes some comparisons between system responses measured with the calibration
rig, and predicted by the theory, as formulated by Bergh and Tijdeman, and
Gumley.

Assumptions of the Theory

The derivation of the theory is fairly lengthy, but described in detail in
References [2] and [6]. The motion of the fluid in a tube of circular cross-
section is described by the fundamental flow equations: the Navier-Stokes
equations of momentum conservation, the equation of continuity, the equation of
state, and the energy equation. The following assumptions are made:

(i) the sinusoidal pertubations in pressure, density, temperature and
velocity are small in comparison to the mean values.

(ii) The length to diameter ratios of the tube sections are assumed large so
that end effects are negligible.

(iii) The Reynolds Numbers are low enough so that the flow is laminar
throughout the systen.

(iv) The thermal conductivity of the wall of the tubes is assumed to be large,
so that temperature fluctuations at the wall are zero.

(v) The material of the tube walls is assumed to be rigid.
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(vi) The cross flow velocity at the entrance to the tubes is assumed small.

(vii) When the averaging manifold is included, it is assumed to have rigid
walls, and that there are no spatial variations of fluid properties
within the volume.

(viii) The pressure expansions in the tubing, manifold and transducer volume are
assumed to be polytropic processes.

With these assumptions, Bergh and Tijdeman [2] derived a recursion equation
for the complex ratio of pressure amplitudes across an element consisting of a
tube and a volume. With the assumptions made, the equation is valid for values
of reduced frequency oD/a; much less then unity, where o is the circular
frequency of pressure fluctations, D is the tube diameter and a, is the speed of
sound. This condition is normally easily satisfied for most practical
measurement conditions and frequency requirements. Gumley [6] derived a similar
equation for an element consisting of m identical parallel tubes feeding a
single volume. In this case, the equation gives the ratio of the average of the
pressure amplitudes at the inlets to the m tubes, and the pressure amplitude in
the volume.

The Bergh and Tijdeman element can be used to represent a series of tubes of
different diameters, including restrictors, by setting all volumes except the
last (adjacent to the transducer) equal to zero. The Gumley element can be used
to represent a pneumatic averager (manifold) system at the input end of a series
tube system [6]. For the present results, the theoretical equations were
programmed in BASIC, and a microcomputer used to compute the response
characteristics.

Single Tube Comparisons

Figure 1 shows the computed amplitude ratio and phase response for a simple
constant diameter tube of 1.5 mm internal diameter and 500 mm length connected
to a volume of 250 mm3. The theoretical results were compared with experimental
data obtained for a stainless steel tube connected to a cavity exposed to the
diaphragm of a Setra 237 pressure transducer. The pressure fluctuation
amplitudes in the reference or coupling cavity, at the input end of the tube,
were measured by a Bruel and Kjaer 4147 low frequency microphone. The amplitude
of the sinusoidal pressure fluctuations in the coupling cavity was approximately
70 Pascals. However other runs with amplitudes varying from 20 to 200 Pascals
showed no significant difference in measured respense characteristics.

Reasonable agreement with the experimental data is obtained when the
experimental tube diameter of 1.5 mm is used in the theoretical equations,
including the resonant frequencies of the 2nd and 3rd modes. However a better
agreement with the magnitude of the resonant amplitude peaks and phase response,
is achieved when the tube diameter is reduced by 10% in the theoretical
calculations. Bergh and Tijdeman [2] observed a similar phenomenon in their
comparisons and attributed the discrepancy to inaccurate measurement of the tube
diameter. We do not believe that this is the reason for the differences in our
case, as great care was taken to accurately measure the internal diameter of the
tube.

Other comparisons have been made for series tubes involving flexible
(p.v.c.) tubes, changes in dlameter due to pressure taps, and restrictors.
Generally, the theory has predicted the experimental data quite well in these
cases, although it is not always possible to specify the diameter of the p.v.c.
tubing accurately.



Manifold Tube Comparisons

A comparison for a system involving a 10 input manifold system, as well as
flexible tubing, pressure taps and restrictors is shown in Figure 2.This is a
near optimum system, with a flat amplitude response (* 5%) and near-linear
phase lag up to nearly 300 Hz, that has been used for measurement of area-
averaged loads on wind tunnel models of buildings. For such a complex system,
the theory predicts the measured response quite well. No reduction of tube
diameters was made in this case.

It should be noted that the input tubes to the manifold were assumed to be
of constant diameter, in the theoretical calculations. In fact, in the
experiment there were pressure taps of smaller diameter at the start and
termination of these tubes. Although it is possible to account for these in the
theoretical model, the computations become considerably more complicated [6] and
were not justified for the small improvement in accuracy to be achieved.

Discussion and Conclusions

Like Gumley [6], we believe that the theoretical method can be used to
optimize tubing systems required for measurements. However, it is essential that
an experimental calibration be carried out subsequently. When this is done, fine
tuning of the system, by, for example, moving the restrictor(s) along the tube
is usually required for final optimization.

It should also be noted that tubing systems incorporating a 'Scanivalve'
pressure scanning switch cannot be adequately be included in the theoretical
predictions. The interior passages of such devices include right angled bends,
and tapered tubes which are not catered for by the theory. We have found that
experimental trial and error calibration must be used for systems involving
these devices.

A paper describing an optimization procedure for pressure systems is in
preparation. However, for most cases, both single tube and manifolded systems,
it is found that the best results are obtained using restrictors whose optimum
positions are fairly close to the pressure transducer. Figure 2 shows the
response curves for such a system,
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Figure 1. Comparison of responses - simple system
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Figure 2. Comparison of responses - complex system



