CODIFICATION OF TOPOGRAPHICAL EFFECTS
P S Jacksonl

Introduction :

Wind loading codes account for the effects of topography in many
different ways. Some allow for an increase of speed of up to 20%, others
have a more precisely detined ’escarpment rule’ - the remainder either
caution that topographical effects can be significant or ignore them
altogether. However the last ten years have seen a great flurry of
measurements of wind flow over hills, and it is now obvious that the
allowance for speedup in loading codes is inadequate. It is not entirely
obvious how to improve this situation, but this paper discusses some recent
Progress.

Loading codes should always be based on realistic physical models, and
most studies of wind flow over hills have been interpreted in terms of the
theorv due to Jackson and Hunt (1975). In general this theory gives
surprisingly good agreement with numerical, full-scale and wind—tunnel
measurements, so as the flow structure proposed by the theory is quite
simple it would seem to be the obvious starting point for development of
design rules. The basic idea is that the flow has two discrete regions - a
thin ’"inner layer’ next to the surface in which changes in shear stress are
significant, and a much thicker ‘’outer laver’ in which they are not
important so that the velocity perturbation there can be predicted from
potential theory. The pressure gradient generated by this outer Tlow alsc
acts on the inner layer, where the velocities are much lower and therefore
much more susceplible to pressure gradients. The induced changes in apeead
near the surtface can thus be a large fraction of the incident speeds at the
sames height.

Maximum Speedup
There are several wavs of quantifying this speed change. The ratio most
favoured in the Jiterature is the ’fractional speedup’;

5 = {ulx, & z) ~ Ug(A 2)} / Up{d z)

where u is the speed at a Jocal height of A z above the surface. In regions
where the pressure gradient is small (as at hill crests) one might expect
the tlow lo be logarithmic close to the surface - that is, to be nearly in
local equilibrium - which case § reduces to a constant. ln practice this
does scem to be the case, and this property of tending to a constant near
the surface is the reason for the popularity of S as a speed-up parameter.
One alternative is the 'nondimensional speedup’

A u%% {ulx,8 z) =~ Ug(d 2)} / UgiL)

where L is the hill length. This ratio is based on the scaling for the
outer laver and is therefore independent of the method used for turbulence
closure in the inner laver. However the problem is that actually both the
above measures are relevant, but they apply in different regiong of the
flow. This can quite clearly be seen in Figure 1 (taken from Jackson, 1979)
which is a numerical simulation of flow over a rounded ridge.
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For Z = A z/L > 0.05 the curves for different values of surface roughness
Zo collapse to a single curve for A u, whereas near the surface the
profiles are obviously all logarithmic with intercepts governed by zy and
therefore would collapse to a single curve for S. The height at which the
changeover in flow structure occurs depends on the height of the inner
layer, 1, predicted by Jackson and Hunt (JH) from

/7o In(1/24) = 0.32 L/z,. (1)

There has been considerable argument over this length. This particular
formula predicts some measurements quite well (Bradley, 1980) but is often
found to overpredict the apparent inner layer thickness (Taylor et al,
198Z2). In Figure 1 the A u curves peak at heights almost exactly half those
given by this method. In practice the depth 1 can be quite large. For
L ~ lkm and zy in the range 1 ~ 1000mm the length 1 varies from 30m to 75m,
so clearly the inner laver is often deep encugh to immerse structures
completely. It therefore seems sensible to start a design rule for maximum
speedup based on the constant-value property for S near the surface. Taylor
and Lee (1985) have quite recently proposed the following near-surface
values for fractional speedup;

S [ 2.0 h/L for 2-D ridges
| 0.8 h/L for 2-D escarpments
[ 1.6 h/L for 3-D axisymmetric hills, (2)

max =

where here L is taken as the horizontal distance in which the hill falls to
half its peak height h. Again there are several possible definitions of
hill length, but this one seems to be winning in the literature. The
numerical coefficients here have been selected by Taylor and Lee as average
values of speedup obtained from measurements and numerical predictions.

This linear dependence of speedup on slope originally emerged from the
JH theory and appears to be maintained right up to hill slopes at which
separation begins (about 0.4 for ridges). Obviously once separation begins
speedup does nol continue to increase indefinitely with slope, and Tavlor
and Lee suggest an upper limit of 1.2 for Smax
Spatial Variation of Speedup

A similar proposal for speedup has been made by BRE (1984) as;

S =2 s h/L (33

where s is a ’speed increment coefficient’ with a maximum value of L.0
which takes account of positions other than that of maximum speedup. Here L
is the ftotal length of the slope, so this formula predicts only half the
speedup of Taylor and Lee and is therefore too low. (Note that the working
formula as given in the BRE document omits the h/L tactor.) However the
general formulation of this expression is a good one, but much more
research 1s needed regarding the distribution of s for different hill
shapes (the BRE reference uses some early wind-tunnel results).

The decrease in speedup with height (included in the s factor) is not
easy to predict because different length scales are important at different
heights from the ground. 1t seems clear that the flow near the hill cre::!
is affected most by the ’sharpness’ of the crest (hence the definition of L
used bv Taylor and Lee), but higher up the local topographical detail
becomes less significant and the speed changes are more likely to be
controlled by, say, the overall hill volume. This hypothesis is tested in
Figure 2, where the outer flows from several numerical experiments are



plotied using a length scale L which gives each hill the same volume as
the Witch of Agnesi, as follows:

Hill Shape Cross—sectional area Ly
Witch (1 + x/1)? L )
cosine (1 + cos wx/L)/2 h L L/m
Gaussian exp (~(x/1)%2) h L /7 L/ /7
triangular (L £ x/L) h L L/vm

Here S is the limiting value of S near the surface at the crest, and
the ratio $/8p,, is plotted against height directly above the crest using
the vertical scale A z/l;, in each case. This can be seen to produce a
reasonably good collapse of the data to a single curve given approximately
by -

S/Spax = (1 + 1.2 & 2/L,)7% (4)

The general form of this expression is suggested by the exact solution for
the Witch of Agnesi in the outer region. A construction which is reasonably
accurate at all heights is then;

S/Spax = [ 1.0 for A z/1 < 0.5
: [ eqn (4) for A z/1 » 0.5 (5)

where 1 is given by equation (1). Although the JH theory would suggest that
A u and not S would be the appropriate ratio for heights well above the
surface, a code version would be confusing if more than one speedup were
defined. Unfortunately it seems likely that it will then be necessary to
use more than one definition of hill length, as shown above, but again more
study of this point is needed.

There are several projects under way on full-scale and model-scale
measurements of wind flow over hills. The Kettles Hill experiment carried
out by the Canadian Atmospheric [Environment Service is a good example
(Taylor, et al, 1983, Teunissen et al, 1982). The results show very good
agreement between full-scale measurements and numerical and wind-tunnel
simulations. A similar experiment on a much grander scale is now under way
at  Askervien, and again preliminary AES wind-tunnel results show good
agreement. It therefore seems likely that within even one more year there
will be much more information available about the parameters discussed
above (though it is perhaps equally probable that these experiments will
raise more questions than thev answer).
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