AEROELASTIC ANALYSIS OF SATLS

P.S. Jacksonl

Introduction

The pressure distribution acting on a lifting surface depends on its
shape, and usually this shape is fixed - that is, the aerodynamic loads do
not cause significant changes in the shape of the lifting surface. However
the shape of a sail under load depends strongly on the distribution of
pressure over 1it, so that the shape determines the pressure but the
pressure is determined by the shape. Therefore in order to predict this
shape from first principles it is necessary to solve the aerodvnamic and
structural problems simultaneously. One way of doing this is to split the
problem into two - that is, first assume a fixed shape for the sail and
calculate the pressure distribution acting on it, then hold the pressure
fixed and calculate the shape taken up by an elastic membrane under the
action of the pressure loads, then repeat the whole process. This is the
basis of a successful solution method which has been developed by the
author (Jackson, 1982, 1985) together with his colleague Dr G.W. Christie.

The sail is modelled as a surface of constant-strain triangles
connected at the nodes, allowing the state of strain of each triangle to be
expressed in terms of the displacements of its nodes. 1f the nodes are
displaced from an equilibrium position by a small distance, the virtual
work done by the forces at the nodes is exactly balanced by the change in
strain energy of the elements, and this statement can be expressed as a
nonlinear relationship between the sail shape, the applied pressures, the
material properties and the unknown nodal displacements. A detailed
derivation of these equations is given by Oden and Saloc (1969).

The calculation of the strain energy requires some statement about the
slress/strain relationship of the sail fabric. As the strains in the sail
membrane are small (not exceeding 0.5%), a linear constitutive law can be
used. It is convenient to suppose that the fabric is isotropic. While it is
not difficult to account for this, here only isotropic behaviour is assumed
so thal the elastic modulus B is all that is needed to describe the cloth
stiftness. It is also necessary to model the inability of real membranes to
withstand compressive in-plane sitress - a membrane simply buckles, or
wrinkles.

Dimensional analysis suggests that an impertant ratio is the
aeroelastic number

£ ~-F t/L q ,

where q is the dynamic wind pressure, and t/L the ratio thickness to chord
of the sail. Jackson (1985) has shown that this number represents the ratio
of the elastic stiffness of the sail to its aerodynamic stiffness (the rate
of change of aerodynamic force with sail displacement). In practice this
number is large (at least 103), so that there is no need to actually
calculate this aerodynamic stiffness. The physical significance of the
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number is that any two sails with the same value of £ and the same boundary
and upstream conditions will experience the same strains and generate the
gsame [ift coefficients at the same angle of attack.

As the system of equations for the nodal displacements is highly
nonlinear, it is solved iteratively using the Newton—-Raphson method. The
applied pressures vary as the solution proceeds, and progressively approach
the correct values as the membrane solution approaches its final shape. The
solution method is discussed in more detail by Jackson (1985).

Pressure Prediction

The pressure forces are calculated using potential flow theory, in
which boundarv layers are effectively regarded as vortex sheets having zero
thickness but with a finite jump 1in velocity across them. The sheet
strength is found by requiring the sum of the flow induced by the sheet and
the incident flow to be tangential to the sail surface. Since the finite
element model needs only the average pressure on each element it is
convenient to use a boundary element method in which the vorticity
contained within each element is concentrated around its edges as a vortex
loop - the vortex sheet then becomes a so-called vortex lattice. The
strength of the loops is then found by applying the zero normal flow
condition at the center of each element, giving as many equations as
unknowns. This technique is well established in conventional aerodynamics.

The solution obtained is not unique unless the points at which the flow
separates from the sail surface to form the wake are defined. The only
situation for which this can be done accurately is that where the flow
leaves the trailing edge of the sail smoothly, and this ’Kutta’ condition
is casilv applied by extending the vortex loops adjacent to the trailing
edge go that they trail off to infinity downstream of the sail. :

The presence of the water surface is accounted for by including the
image of every vortex loop in the surface. The approaching freestream flow
is actually sheared and twisted by the vectorial addition of the wind
boundary laver and the boat velocity, so that some vertical displacement of
streamlines occurs as the wind approaches the sail. This displacement is
ignored, but could be accounted for by yet more iterations. As there are no
viscous effects included it is not possible to predict drag arising from
skin friction, or the onset of stall.

Resulls for a Simple Sail

A rather idealised sail has been chosen as an example. The sail is
triangular with neo gap under the foot. It has no pretensioning and no
initial camber, so in the absence of wind loading it is perfectly flat. The
elastic constant for the membrane is f£ - 1000, which means that if a 2Z-D
membrane were loaded uniformly with a pressure of gq it would deflect
laterally to a displacement of obout 4% of the chord. The corner nodes of
the sail are totally constrained, as are those on the leading edge (luff).
The trailing eodge (leech) nodes are not restrained at all.

Figure 1 shows the eguilibrium shape of the sail under wind loading at
six equi spaced heights for an angle of attack of 10°. Since the flat sail
must stretch under the action of any transverse loading, the loaded sail
has acquired both camber and twist. Aerodynamic loading is strongly
concentrated near the leading edge (it reduces to zero at the leech) so the
camber tends to be larger there. However because the leech is unconstrained
it has little resistance to transverse loads and thus allows the sail
sections to twist so as lo reduce the angle ot attack. Initially this



effect is very pronounced but once the sail has acquired some geometric
stiffness by virtue of curvature along the leech between the two restrained
corners it becomes progressively more resistant to lateral loading. This is
reflected in the change in 1ift coefficient with angle of attack, as shown
in Figure 2.

The twist developed by the membrane sail means that its 1ift is less
than that of a rigid sail of the same initial shape, which is also shown.
The stresses in this sail for an angle of attack of 10 degrees are shown in
Figure 3. Here the line segments are proportional to the principal stresses
of the elements, and lie in the same directions. It can be seen that in
many cases the elements do not show a minor principal stress, which means
that they are wrinkled. If the aeroelastic number is now reduced by a
factor of five the sail develops much more twist, as shown by the rear
views of the sails for the two levels of stiffness shown in Figures 3 and
4. If this reduction in £ has occurred because the sail is more stretchy
then the levels of stress are also reduced because less 1ift and more
curvature are developed - this can also be seen in these figures. However
if the sail is the same but £ is reduced by an increase in dynamic
pressure, then the stresses as plotted must be increased by the same factor
-~ this leads to an increase in stress, as expected. To demonstrate the
effect of boundary conditions the edge restraints are now altered so that
both the luff and foot slide along their respective axes. The stress
distribution produced is that shown in Figure 5. While this is markedly
different from Figure 3 the levels of indued camber and twist are about the
same, as expressed by the small difference between lift coefficients for
the two sails (Fig 2). The final example is more realistic shape with
initial vertical and horizontal camber. Because the unloaded shape has
curvature it also has a grealer geometric stiffness, but as the same camber
also greatly increases the lift the net level of stress is about the same
as before. Figure 6 shows that the stress now tends to be concentrated
along the leech.

Conclusions

One of the obstacles to rational sail desgin has been the absence of
any means of engineering analysis. While it will now be possible to
estimate the structural and aerodynamic performance of any given sail, it
is hoped that this method will identify the most important of the numerous
variables in sail design and thus lead to the development of a simpler
model which can be used to predict optimum sail shapes directly.
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Figure 7 : Sections of loaded sail (Flat-1),
initially flat.
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Shape and stress of initially-flat sail

(Flat-I) - fixed 1luff, & = 1000.
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Shape and stress of inmitially-flat

sail (& = 200).
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Figure 6 ¢

Shape and stress of
initially-curved sail.



